Results of Proficiency Test mixed-Xylenes October 2021 Organized by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands Author: Mrs. E.R. Montenij-Bos Correctors: ing. R.J. Starink & ing. A.S. Noordman-de Neef Report: iis21C13 December 2021 ### **CONTENTS** | 1 | INTRODUCTION | 3 | |-----|---|----| | 2 | SET UP | 3 | | 2.1 | ACCREDITATION | 3 | | 2.2 | PROTOCOL | 3 | | 2.3 | CONFIDENTIALITY STATEMENT | 3 | | 2.4 | SAMPLES | 4 | | 2.5 | STABILITY OF THE SAMPLES | 5 | | 2.6 | ANALYZES | 5 | | 3 | RESULTS | 6 | | 3.1 | STATISTICS | 6 | | 3.2 | GRAPHICS | 7 | | 3.3 | Z-SCORES | 7 | | 4 | EVALUATION | 8 | | 4.1 | EVALUATION PER SAMPLE AND PER COMPONENT | 8 | | 4.2 | PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES | 11 | | 4.3 | COMPARISON OF THE OCTOBER 2021 PROFICIENCY TEST WITH PREVIOUS PTS | 13 | ### Appendices: | 1. | Data, statistical and graphic results | 14 | |----|---------------------------------------|----| | 2. | Number of participants per country | 38 | | 3 | Abbreviations and literature | 30 | #### 1 Introduction Since 1995 the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the analysis of mixed-Xylenes once every two years. During the annual proficiency testing program 2021/2022 it was decided to continue the round robin for the analysis of mixed-Xylenes. In this interlaboratory study 29 laboratories in 17 different countries registered for participation. See appendix 2 for the number of participants per country. In this report the results of the mixed-Xylenes proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com. ### 2 SET UP The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. It was decided to send two different samples of 250 mL amber glass bottles respectively labelled #21181 and #21182. The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation. #### 2.1 ACCREDITATION The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This PT falls under the accredited scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires. #### 2.2 PROTOCOL The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com from the FAQ page. ### 2.3 CONFIDENTIALITY STATEMENT All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved. mixed-Xylenes: iis21C13 page 3 of 39 #### 2.4 SAMPLES A batch of approximately 17 liters of mixed Xylenes was prepared from of high purity Xylenes by iis. After homogenization 67 amber glass bottles of 250mL were filled and labelled #21181. The homogeneity of the subsamples was checked by determination of p-Xylene in accordance with test method ASTM D7504 on 8 stratified randomly selected subsamples. | | p-Xylene
in %M/M | |-----------------|---------------------| | sample #21181-1 | 34.86 | | sample #21181-2 | 34.86 | | sample #21181-3 | 34.86 | | sample #21181-4 | 34.86 | | sample #21181-5 | 34.85 | | sample #21181-6 | 34.85 | | sample #21181-7 | 34.84 | | sample #21181-8 | 34.86 | Table 1: homogeneity tests results of subsamples #21181 From the above test results the repeatability was calculated and compared with 0.3 times the reproducibility of the reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table. | | p-Xylene
in %M/M | |---------------------------------|---------------------| | r (observed) | 0.021 | | reference test method | ASTM D7504:21 | | 0.3 x R (reference test method) | 0.168 | Table 2: evaluation of repeatability of subsamples #21181 The calculated repeatability is in agreement with 0.3 times the reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed. A batch of approximately 17 liters of mixed Xylenes was prepared from of high purity Xylenes by iis. The batch was spiked with Ethylbenzene. After homogenization 68 amber glass bottles of 250mL were filled and labelled #21182. The homogeneity of the subsamples was checked by determination of p-Xylene in accordance with test method ASTM D7504 on 8 stratified randomly selected subsamples. | | p-Xylene
in %M/M | |-----------------|---------------------| | sample #21182-1 | 30.02 | | sample #21182-2 | 30.03 | | sample #21182-3 | 30.03 | | sample #21182-4 | 30.03 | page 4 of 39 mixed-Xylenes: iis21C13 | | p-Xylene
in %M/M | |-----------------|---------------------| | sample #21182-5 | 30.03 | | sample #21182-6 | 30.03 | | sample #21182-7 | 30.03 | | sample #21182-8 | 30.03 | Table 3: homogeneity tests results of subsamples #21182 From the above test results the repeatability was calculated and compared with 0.3 times the reproducibility of the reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table. | | p-Xylene
in %M/M | |---------------------------------|---------------------| | r (observed) | 0.010 | | reference test method | ASTM D7504:21 | | 0.3 x R (reference test method) | 0.144 | Table 4: evaluation of repeatability of subsamples #21182 The calculated repeatability is in agreement with 0.3 times the reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed. To each of the participating laboratories one sample mixed-Xylenes labelled #21181 and one sample mixed-Xylenes labelled #21182 were sent on September 8, 2021. An SDS was added to the sample package. ### 2.5 STABILITY OF THE SAMPLES The stability of mixed-Xylenes in amber glass bottles was checked. The material was found sufficiently stable for the period of the proficiency test. ### 2.6 ANALYZES The participants were requested to determine on samples #21181 and #21182: Benzene, Toluene, Ethylbenzene p-Diethylbenzene, o-Xylene, m-Xylene, p-Xylene, sum of m- and p-Xylene, Total mixed-Xylenes, iso-Propyl Benzene (Cumene), sum of C9 and heavier aromatics and Non-aromatics. It was explicitly requested to treat the samples as if they were routine samples and to report the test results using the indicated units on the report form and not to round the test results but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations. To get comparable test results, a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com. ### 3 RESULTS During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers. Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and original test results are placed under 'Remarks' in the test result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks. ### 3.1 STATISTICS The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation. First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the
Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care. The assigned value is determined by consensus based on the test results of the group of participants after rejection of the statistical outliers and/or suspect data. page 6 of 39 mixed-Xylenes: iis21C13 According to ISO13528 all (original received or corrected) results per determination were submitted to outlier tests. In the iis procedure for proficiency tests, outliers are detected prior to calculation of the mean, standard deviation and reproducibility. For small data sets, Dixon (up to 20 test results) or Grubbs (up to 40 test results) outlier tests can be used. For larger data sets (above 20 test results) Rosner's outlier test can be used. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by F(0.01) for the Rosner's test. Stragglers are marked by F(0.01) for the Dixon's test, by F(0.01) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations. For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1. was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report. Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8. #### 3.2 GRAPHICS In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle. Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve (dotted line) was projected over the Kernel Density Graph (smooth line) for reference. The Gauss curve is calculated from the consensus value and the corresponding standard deviation. ### 3.3 Z-SCORES To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements (derived from e.g. ISO or ASTM test methods), the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study. The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz or an estimated reproducibility based on former its proficiency tests. mixed-Xylenes: iis21C13 page 7 of 39 When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use. The z-scores were calculated according to: ``` z_{\text{(target)}} = (test result - average of PT) / target standard deviation ``` The $z_{(target)}$ scores are listed in the test result tables in appendix 1. Absolute values for z<2 are very common and absolute values for z>3 are very rare. The usual interpretation of z-scores is as follows: ``` |z| < 1 good 1 < |z| < 2 satisfactory 2 < |z| < 3 questionable 3 < |z| unsatisfactory ``` #### 4 **EVALUATION** Some problems were encountered with the dispatch of the samples due to COVID-19 pandemic. Therefore, the reporting time on the data entry portal was extended with two weeks. Two participants reported test results after the extended reporting date and five other participants did not report any test results. Not all laboratories were able to report all tests requested. In total 24 participants reported 506 numerical test results. Observed were 23 outlying test results, which is 4.5%. In proficiency studies outlier percentages of 3% - 7.5% are quite normal. Not all data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1. #### 4.1 EVALUATION PER SAMPLE AND PER COMPONENT In this section the reported test results are discussed per sample and per component. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data. The abbreviations, used in these tables, are explained in appendix 3. page 8 of 39 mixed-Xylenes: iis21C13 For the determination of mixed-Xylenes test method ASTM D7504 is considered to be the official test method as the previous test methods ASTM D2306, D2360 and D6563 are all withdrawn. Test method ASTM D7504 mentions a reproducibility at one defined concentration for all components. Regretfully, not for all components the estimated target reproducibility derived from ASTM D7504 could be used. The estimated target reproducibilities as obtained from ASTM D7504:21 are for some components unrealistic (for example Toluene or Non-aromatics). This is observed in both samples. This occurs when the concentrations of these components in the PT samples strongly deviates from the concentrations as mentioned in table 9 of ASTM D7504:21. For these components the estimated reproducibility based on the Horwitz equation is used. ### sample #21181 <u>Benzene</u>: This determination was not problematic. The reporting participants agreed on test results near or below the application range. Therefore, no z-scores are calculated. Toluene: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in full agreement with the estimated reproducibility using the Horwitz equation and the requirements of ASTM D7504:21. Ethylbenzene: This determination may be problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the estimated reproducibility using the Horwitz equation and the requirements of ASTM D7504:21 p-Diethylbenzene: This determination was not problematic. The reporting participants agreed on test results near or below the application range. Therefore, no z-scores are calculated. <u>o-Xylene</u>: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ASTM D7504:21. <u>m-Xylene</u>: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ASTM D7504:21. p-Xylene: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ASTM D7504:21. sum of m- and p-Xylene: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements from ASTM D7504:21. mixed-Xylenes: iis21C13 page 9 of 39 - <u>Total mixed-Xylenes</u>: This determination was not problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements from ASTM D7504:21. - <u>iso-Propylbenzene (Cumene)</u>: This determination was not problematic. Three statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements from ASTM D7504:21. - sum of C9 and heavier aromatics: This determination may be problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the estimated reproducibility using the Horwitz equation (based on 4 components) but it is in agreement with the large requirements from ASTM D7504:21. - Non-aromatics: This determination may be problematic. No statistical outliers were observed. The calculated reproducibility is not in agreement with the estimated reproducibility using the Horwitz equation (based on 9 components) and not in agreement with the small requirements from ASTM D7504:21. ### sample #21182 <u>Benzene</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D7504:21. <u>Toluene</u>: This determination was not
problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the estimated reproducibility using the Horwitz equation and the requirements of ASTM D7504:21. Ethylbenzene: This determination was not problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM D7504:21. <u>p-Diethylbenzene</u>: This determination was not problematic. The reporting participants agreed on test results near or below the application range. Therefore, no z-scores are calculated <u>o-Xylene</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in good agreement with the requirements of ASTM D7504:21. <u>m-Xylene</u>: This determination was not problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM D7504:21. page 10 of 39 mixed-Xylenes: iis21C13 p-Xylene: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ASTM D7504:21. sum of m- and p-Xylene: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ASTM D7504:21. Total mixed-Xylenes: This determination was problematic. Two groups of test results were observed. It is clear that one group includes Ethylbenzene in the calculation while the other group does not. Including Ethylbenzene into the total mixed-Xylenes depends on the test method used. It might also dependent on what the customers would like to receive as total mixed-Xylenes? Therefore, it is decided not to evaluate this parameter with the received results. Test method ASTM D7502:21 includes Ethylbenzene (see chapter 15.1.2 from ASTM D7502). Based on this formula the total mixed-Xylenes is calculated by iis (see appendix 1 for more details). Three statistical outliers were observed in the iis calculated results. iso-Propylbenzene (Cumene): This determination was problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the requirements of ASTM D7504:21. sum of C9 and heavier aromatics: This determination may be problematic. Three statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the estimated reproducibility using the Horwitz equation (based on 4 components) but it is in agreement with the large requirements from ASTM D7504:21. Non-aromatics: This determination may be problematic. No statistical outliers were observed. The calculated reproducibility is not in agreement with the estimated reproducibility using the Horwitz equation (based on 9 components) and is not in agreement with the small requirements from ASTM D7504:21. #### 4.2 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES A comparison has been made between the reproducibility as declared by the reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 * standard deviation) and the target reproducibility derived from literature reference test methods (in casu ASTM, EN and ISO test methods) or estimated using the Horwitz equation are presented in the next tables. mixed-Xylenes: iis21C13 page 11 of 39 | Component | unit | n | average | 2.8 * sd | R(lit) | |---------------------------------|------|----|---------|----------|--------| | Benzene | %M/M | 21 | <0.01 | n.e. | n.e. | | Toluene | %M/M | 22 | 0.007 | 0.002 | 0.002 | | Ethylbenzene | %M/M | 23 | 0.013 | 0.004 | 0.003 | | p-Diethylbenzene | %M/M | 9 | <0.01 | n.e. | n.e. | | o-Xylene | %M/M | 23 | 39.84 | 0.32 | 2.02 | | m-Xylene | %M/M | 23 | 25.00 | 0.23 | 0.35 | | p-Xylene | %M/M | 23 | 34.95 | 0.19 | 0.56 | | sum of m- and p-Xylene | %M/M | 22 | 59.95 | 0.29 | 1.28 | | Total mixed Xylenes | %M/M | 21 | 99.78 | 0.07 | 5.48 | | iso-Propylbenzene (Cumene) | %M/M | 19 | 0.107 | 0.011 | 0.013 | | sum of C9 and heavier aromatics | %M/M | 19 | 0.150 | 0.055 | 0.044 | | Non-aromatics | %M/M | 23 | 0.044 | 0.033 | 0.024 | Table 5: reproducibilities of tests on sample #21181. | Component | unit | n | average | 2.8 * sd | R(lit) | |---------------------------------|------|----|---------|----------|--------| | Benzene | %M/M | 19 | 0.005 | 0.003 | 0.011 | | Toluene | %M/M | 24 | 0.010 | 0.002 | 0.002 | | Ethylbenzene | %M/M | 22 | 9.76 | 0.15 | 0.32 | | p-Diethylbenzene | %M/M | 9 | <0.01 | n.e. | n.e. | | o-Xylene | %M/M | 24 | 19.41 | 0.26 | 0.98 | | m-Xylene | %M/M | 22 | 40.58 | 0.24 | 0.57 | | p-Xylene | %M/M | 23 | 30.11 | 0.14 | 0.48 | | sum of m- and p-Xylene | %M/M | 22 | 70.69 | 0.32 | 1.51 | | Total mixed Xylenes | %M/M | 21 | 99.86*) | n.e. | n.e. | | iso-Propylbenzene (Cumene) | %M/M | 21 | 0.053 | 0.009 | 0.006 | | sum of C9 and heavier aromatics | %M/M | 18 | 0.081 | 0.029 | 0.027 | | Non-aromatics | %M/M | 23 | 0.049 | 0.037 | 0.026 | Table 6: reproducibilities of tests on sample #21182. Without further statistical calculations, it can be concluded that for many tests there is a good compliance of the group of participants with the reference test methods. The problematic tests have been discussed in paragraph 4.1. page 12 of 39 mixed-Xylenes: iis21C13 ^{*)} average as Total mixed Xylenes calculated by iis ### 4.3 COMPARISON OF THE OCTOBER 2021 PROFICIENCY TEST WITH PREVIOUS PTS | | October
2021 | October
2019 | October
2017 | October
2015 | September 2013 | |------------------------------------|-----------------|-----------------|-----------------|-----------------|----------------| | Number of reporting laboratories | 24 | 22 | 27 | 29 | 29 | | Number of test results | 506 | 406 | 502 | 546 | 519 | | Number of statistical outliers | 23 | 18 | 33 | 42 | 57 | | Percentage of statistical outliers | 4.5% | 4.4% | 6.6% | 7.7% | 11.0% | Table 7: comparison with previous proficiency tests. In proficiency tests, outlier percentages of 3% - 7.5% are quite normal. The performance of the determinations of the proficiency tests was compared against the requirements of the reference test methods. The conclusions are given the following table. | Component | October
2021 | | October
2019 | | October
2017 | | October 2015 *) | | September 2013 *) | | |----------------------------------|-----------------|-----|-----------------|------|-----------------|------|-----------------|------|-------------------|------| | Benzene | n.e. | ++ | - | ++ | n.e. | ++ | n.e. | - | n.e. | () | | Toluene | +/- | +/- | - | ++ | ++ | ++ | + | +/- | ++ | | | Ethylbenzene | - | ++ | +/- | + | +/- | ++ | ++ | | +/- | ++ | | o-Xylene | ++ | ++ | ++ | ++ | +/- | + | + | + | | +/- | | m-Xylene | + | ++ | + | + | ++ | ++ | - | + | - | ++ | | p-Xylene | ++ | ++ | + | + | + | ++ | + | ++ | - | ++ | | sum of m- and p-Xylenes | ++ | ++ | ++ | ++ | ++ | ++ | + | + | n.a. | n.a. | | Total mixed-Xylenes | ++ | () | n.a. | iso-Propyl Benzene | + | - | - | - | +/- | | - | - | + | | | sum of C9 ⁺ aromatics | - | -/+ | - | +/- | ++ | | n.e. | n.e. | + | | | Non-aromatics | - | - | - | +/- | + | - | | | | | Table 8: comparison of performances against the reference test method requirements over the last PTs. Results between brackets are outside application range of test method. The following performance categories were used: ++ : group performed much better than the reference test methods + : group performed better than the reference test methods +/- : group performance equals the reference test methods - : group performed worse than the reference test methods -- : group performed much worse than the reference test methods n.e.: not evaluated mixed-Xylenes: iis21C13 ^{*)} This year another target test method was used (ASTM D2360 or ASTM D6563) APPENDIX 1 Determination of Benzene on sample #21181; results in %M/M | lab | method | value | mark z(targ) | remarks | |--------------|----------------|-------------------|--------------|---------| | 52 | D7504 | 0.0013 | | | | 150 | | | | | | 171 | D7504 | 0.0016 | | | | 315 | D7504 | <0.0002 | | | | 317 | D7504 | 0.0005 | | | | 323 | D6563 | < 0.01 | | | | 396 | D7504 | <0,01 | | | | 445 | D2360 | 0.001 | | | | 446 | | | | | | 551 | | | | | | 555 | | | | | | 558 | | | | | | 734 | D7504 | 0.000575 | | | | 823 | D7504 | 0.0004 | | | | 862 | D7504 | 0.0018 | | | | 913 | D7504 | 0.001425 | | | | 1011 | D5917 | 0.0001 | | | | 1040 | D7504 | 0.002 | | | | 1041 | D6563 | <0,01 | | | | 1081 | D6563 | 0 | | | | 1250 | D7504 | | | | | 1320 | D7504 | < 0.01 | | | | 1434 | D7504 | 0.00171
0.0064 | | | | 1530
1812 | D7504 | | | | | 6201 | | | | | | 6262 | D7504 | 0.0005 | | | | 6412 | D7304
D5917 | 0.0000 | | | | 7009 | D2306 | 0.005 | | | | 1008 | D2300 | 0.003 | | | | | n | 21 | | | | | mean (n) | <0.01 | | | | | | -0.01 | | | page 14 of 39 mixed-Xylenes: iis21C13 ### Determination of Toluene on sample #21181; results in %M/M | Lab | method | value | mark | z(targ) | remarks | |--------------|------------------|-------------------|---------|----------------|------------------------| | 52 | D7504 | 0.0078 | | 0.66 | | | 150 | D7504 | 0.0004 | | 4.00 | | | 171 | D7504 | 0.0084 | | 1.63 | | | 315 | D7504 | 0.0073 | | -0.15 | | | 317 | D7504 | 0.0067 | 0 | -1.12 | first new system 0.04 | | 323 | D6563 | <0.01 | С | | first reported 0.01 | | 396 | D7504 | 0.0087 | | 2.11 | | | 445 | D2360 | 0.008 | | 0.98 | | | 446 | | | | | | | 551 | | | | | | | 555 | | | | | | | 558 | D7504 | 0.007005 | | 0.40 | | | 734 | D7504 | 0.007695 | | 0.49 | | | 823 | D7504 | 0.0071 | | -0.47 | | | 862 | D7504 |
0.0077 | | 0.49 | | | 913 | D7504 | 0.006325 | | -1.73 | | | 1011 | D5917 | 0.0066 | | -1.28 | | | 1040 | D7504 | 0.008 | 0 | 0.98 | first way and all 0.04 | | 1041 | D6563 | 0.008 | С | 0.98 | first reported 0.01 | | 1081 | D6563 | 0.0072738 | | -0.19 | | | 1250 | D7504 | 0.0066 | D(0.05) | -1.28 | | | 1320 | D7504 | 0.01 | R(0.05) | 4.21 | | | 1434 | D7504 | 0.00776 | | 0.59 | | | 1530
1812 | D7504 | 0.0065
0.00717 | | -1.44
-0.36 | | | | D7504 | | | | | | 6201
6262 | D7504
D7504 | 0.0073
0.0075 | | -0.15
0.17 | | | | D5917 | | | | | | 6412 | | 0.00724 | | -0.25 | | | 7009 | D2306 | 0.007 | | -0.64 | | | | normality | OK | | | | | | n | 22 | | | | | | outliers | 1 | | | | | | mean (n) | 0.00739 | | | | | | st.dev. (n) | 0.00739 | | | | | | R(calc.) | 0.000030 | | | | | | st.dev.(Horwitz) | 0.000619 | | | | | | R(Horwitz) | 0.00019 | | | | | Compa | | 0.00170 | | | | | Compe | R(D7504:21) | 0.01745 | | | | | | 1.(51007.21) | 3.017 40 | | | | | | | | | | | mixed-Xylenes: iis21C13 page 15 of 39 # Determination of Ethylbenzene on sample #21181; results in %M/M | lab | method | value | mark | z(targ) | rema | rke | | | | | | | | | | | | |--|---|---|-------------|---|----------|---------------|--------|----------|------|---|----------|------|---|----------|------|------|--------| | 52 | D7504 | 0.0142 | iilai K | 1.02 | rema | i NO | | | | | | | | | | | | | 150 | | | | | | | | | | | | | | | | | | | 171 | D7504 | 0.0149 | | 1.71 | | | | | | | | | | | | | | | 315
317 | D7504
D7504 | 0.0137
0.0123 | | 0.53
-0.86 | | | | | | | | | | | | | | | 323 | D6563 | 0.0123 | | -3.14 | | | | | | | | | | | | | | | 396 | D7504 | 0.0153 | | 2.11 | | | | | | | | | | | | | | | 445 | D6563 | 0.010 | | -3.14 | | | | | | | | | | | | | | | 446
551 | | | | | | | | | | | | | | | | | | | 555 | | | | | | | | | | | | | | | | | | | 558 | | | | | | | | | | | | | | | | | | | 734 | D7504 | 0.013895 | | 0.72 | | | | | | | | | | | | | | | 823
862 | D7504
D7504 | 0.0133
0.0141 | | 0.13
0.92 | | | | | | | | | | | | | | | 913 | D7504 | 0.011433 | | -1.72 | | | | | | | | | | | | | | | 1011 | D5917 | 0.0102 | | -2.94 | | | | | | | | | | | | | | | 1040
1041 | D7504
D6563 | 0.015
0.014 | С | 1.81
0.82 | firet r | oporto | 4 U U | 11 | | | | | | | | | | | 1041 | D6563 | 0.014 | C | 0.62 | IIISU | eporte | u u.c | , , | | | | | | | | | | | 1250 | D7504 | 0.0126 | | -0.56 | | | | | | | | | | | | | | | 1320 | D7504 | 0.02 | R(0.01) | 6.76 | | | | | | | | | | | | | | | 1434
1530 | D7504
D7504 | 0.01405
0.0116 | | 0.87
-1.55 | | | | | | | | | | | | | | | 1812 | D7304 | 0.0110 | | 0.99 | | | | | | | | | | | | | | | 6201 | D7504 | 0.0138 | | 0.62 | | | | | | | | | | | | | | | 6262 | D7504 | 0.0138 | | 0.62 | | | | | | | | | | | | | | | 6412
7009 | D5917
D2306 | 0.01385
0.013 | | 0.67
-0.17 | | | | | | | | | | | | | | | 7000 | | | | 0.17 | | | | | | | | | | | | | | | | normality | OK | | | | | | | | | | | | | | | | | | n
outliers | 23
1 | | | | | | | | | | | | | | | | | | mean (n) | 0.01317 | st.dev. (n) | 0.001554 | | | | | | | | | | | | | | | | | | R(calc.) | 0.00435 | | | | | | | | | | | | | | | | | | R(calc.)
st.dev.(Horwitz) | 0.00435
0.001011 | | | | | | | | | | | | | | | | | Comp | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
pare | 0.00435
0.001011
0.00283 | | | | | | | | | | | | | | | | | Comp | R(calc.)
st.dev.(Horwitz)
R(Horwitz) | 0.00435
0.001011 | | | | | | | | | | | | | | | | | | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
pare | 0.00435
0.001011
0.00283 | | | | | | | | | | | | | | | | | Comp. | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
pare | 0.00435
0.001011
0.00283 | | | | | | | | | | | | | | | | | | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
pare | 0.00435
0.001011
0.00283 | | | | | | | | | | | | | | | × | | 0.025 T | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
pare | 0.00435
0.001011
0.00283 | | | | | | | | | | | | | | | x | | 0.025 T | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
pare | 0.00435
0.001011
0.00283
0.00043 | | ΔΔ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | x | | 0.025 T | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
pare | 0.00435
0.001011
0.00283
0.00043 | Δ Δ | ΔΔ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | × | | 0.025 T
0.02 -
0.015 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
pare | 0.00435
0.001011
0.00283
0.00043 | Δ Δ- | ΔΔ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | * | | 0.025 T
0.02 -
0.015 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
pare | 0.00435
0.001011
0.00283
0.00043 | | <u> </u> | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | x | | 0.025 T 0.02 - 0.015 0.01 - A | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | Δ Δ | ΔΔ | Δ | Δ | Δ | Δ | | | | | | | | | _ | | 0.025 T 0.02 - 0.015 0.011 - A | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
rare
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | 7009
823 | 315 Table 1 | 6201 | 2829 | 6412 | Δ. | 1004 | χ. ξ. ξ. Δ. | △ | 1812 | Δ | <u>A</u> | 1040 | 3986 | 1320 x | | 0.025 0.005 0.005 0.005 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | 7009
823 | 1001
3.16 | 1029 | △ | 6412 | Δ | | | | | | | | | _ | | 0.025 T 0.02 - 0.015 0.01 - A | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | | A A 49 49 49 49 49 49 49 49 49 49 49 49 49 | 6201 | 2929 | 6412 | A | | | | | | | | | _ | | 0.025 0.005 0.005 0.005 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | | 316 | (C201 | Z8759 | 6412 | a | | | | | | | | | _ | | 0.025 0.02 0.015 0.005 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | | 316 | © (200) | 292.9 | P P | A 465 | | | | | | | | | _ | | 0.025 0.02 0.015 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
0.005 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | | 316 | 4 | 2029 | 6412 | Δ. | | | | | | | | | _ | | 0.025 0.02 0.015 0.005 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | | 1001
3.15 | 10729 | 4 | B412 ► | A 25° | | | | | | | | | _ | | 0.025 0.02 0.015 0.005 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | | 1081
316 | 1029 | 2200 | 6412 | Δ | | | | | | | | | _ | | 0.025 0.02 0.015 0.005 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | | 9 9 9 16 17 17 17 17 17 17 17 17 17 17 17 17 17 | 4 | 2020 | 6412 | A 822 | | | | | | | | | _ | | 0.025 0.02 0.015 0.005 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | | A A 329 | 1000 | △ 7999 | 6412 | A85 | | | | | | | | | _ | | 0.025 0.02 0.015 0.005
0.005 0.005 0.005 0.005 0.005 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | | 316 | Q.201 | 28/29 | 6412 | Δ
82 | | | | | | | | | _ | | 0.025 0.02 0.015 0.005 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | | 315 | № | 2829 | 6412 | 467 | | | | | | | | | _ | | 0.025 0.02 0.015 0.005 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | | A A (1900) | 6201 | 2923 | 6412 | 754 | | | | | | | | | _ | | 0.025 0.02 0.015 0.005 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | | 316 | 0200 | 2029 | 6412 | A67 | | | | | | | | | _ | | 0.025 0.02 0.015 0.005 | R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.00435
0.001011
0.00283
0.00043 | nsity | 7 P | 10729 | 20229 | 6412 | A 25° | | | | | | | | | _ | page 16 of 39 mixed-Xylenes: iis21C13 # Determination of p-Diethylbenzene on sample #21181; results in %M/M | lab | method | value | mark | z(targ) | remarks | |------|-----------|-----------|------|---------|---------| | 52 | | | | | | | 150 | | | | | | | 171 | | | | | | | 315 | D7504 | <0.0002 | | | | | 317 | | | | | | | 323 | | | | | | | 396 | | | | | | | 445 | | | | | | | 446 | | | | | | | 551 | | | | | | | 555 | | | | | | | 558 | | | | | | | 734 | D7504 | 0.0000 | | | | | 823 | D7504 | <0.0002 | | | | | 862 | D7504 | <0.0002 | | | | | 913 | | | | | | | 1011 | | | | | | | 1040 | | | | | | | 1041 | D6563 | <0,01 | | | | | 1081 | D6563 | 0.0043969 | | | | | 1250 | | | | | | | 1320 | | | | | | | 1434 | D7504 | 0.00216 | | | | | 1530 | | | | | | | 1812 | | | | | | | 6201 | | | | | | | 6262 | D7504 | <0.0005 | | | | | 6412 | | | | | | | 7009 | D2306 | 0.000 | | | | | | n | 9 | | | | | | mean (n) | <0.01 | | | | | | mean (II) | ~U.U1 | | | | # Determination of o-Xylene on sample #21181; results in %M/M | lab | method | value | mark | z(targ) | remarks | | | | | | | | | | | |--------------|----------------------|-------------------|---------|--------------|----------|------|-----|------|-----|------|------|-----|------|-----|------| | 52 | D7504 | 39.7825 | IIIal N | -0.08 | i emai K | | | | | | | | | | | | 150 | D1007 | 39.7623 | | -0.00 | | | | | | | | | | | | | 171 | D7504 | 39.7075 | | -0.18 | | | | | | | | | | | | | 315 | D7504 | 39.95 | | 0.15 | | | | | | | | | | | | | 317 | D7504 | 39.83 | | -0.01 | | | | | | | | | | | | | 323 | D6563 | 39.87 | | 0.04 | | | | | | | | | | | | | 396 | D7504 | 39.98 | | 0.19 | | | | | | | | | | | | | 445 | D6563 | 39.89 | | 0.07 | | | | | | | | | | | | | 446 | | | | | | | | | | | | | | | | | 551
555 | | | | | | | | | | | | | | | | | 558 | | | | | | | | | | | | | | | | | 734 | D7504 | 39.84224 | | 0.00 | | | | | | | | | | | | | 823 | D7504 | 39.8122 | | -0.04 | | | | | | | | | | | | | 862 | D7504 | 39.811 | | -0.04 | | | | | | | | | | | | | 913 | D7504 | 39.83577 | | -0.01 | | | | | | | | | | | | | 1011 | D5917 | 39.5416 | | -0.42 | | | | | | | | | | | | | 1040 | D7504 | 39.821 | | -0.03 | | | | | | | | | | | | | 1041 | D6563 | 39.83 | | -0.01 | | | | | | | | | | | | | 1081 | D6563 | 39.7544645 | | -0.12 | | | | | | | | | | | | | 1250 | D7504 | 39.8700 | | 0.04 | | | | | | | | | | | | | 1320
1434 | D7504
D7504 | 40.09
39.89153 | | 0.35
0.07 | | | | | | | | | | | | | 1530 | D7504 | 39.961 | | 0.07 | | | | | | | | | | | | | 1812 | D7304 | 39.64121 | | -0.28 | | | | | | | | | | | | | 6201 | D7504 | 38.53 | R(0.01) | -1.82 | | | | | | | | | | | | | 6262 | D7504 | 39.8622 | (0.0.) | 0.03 | | | | | | | | | | | | | 6412 | D5917 | 39.86729 | | 0.04 | | | | | | | | | | | | | 7009 | D2306 | 39.894 | | 0.07 | normality | suspect | | | | | | | | | | | | | | | | n | 23 | | | | | | | | | | | | | | | |
outliers
mean (n) | 1
39.8407 | | | | | | | | | | | | | | | | st.dev. (n) | 0.11259 | | | | | | | | | | | | | | | | R(calc.) | 0.3152 | | | | | | | | | | | | | | | | st.dev.(D7504:21) | 0.72015 | | | | | | | | | | | | | | | | R(D7504:21) | 2.0164 | 43 T | 42 + - | | | | | | | | | | | | | | | _ | | 41 - | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | 40 + | Δ Δ Δ | Δ Δ | Δ Δ | Δ Δ | Δ Δ | | Δ Δ | | | | | Δ | Δ | Δ | | | 39 + | Δ - | | | | | | | | | | | | | | | | 33 *_ | | | | | | | | | | | | | | | _ | | 38 - | | | | | | | | | | | | | | | | | 37 | | | | | | | | | | | | | | | | | 57 | 171 171 | 52 | 823 | 317 | 913 | 6262 | 323 | 1250 | 445 | 1434 | 7009 | 315 | 1530 | 396 | 1320 | | | | | | | | | | | | | | | | | | | 6 — | | | — I | | | | | | | | | | | | | | | | Kernel Densit | tv | | | | | | | | | | | | | | 5 - | | rtornor Bonon | , | | | | | | | | | | | | | | "] | | Λ | | | | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | | 4 - | | | | | | | | | | | | | | | | | | | W | | | | | | | | | | | | | | | 3 - | | /\ | | | | | | | | | | | | | | | " | | // / | | | | | | | | | | | | | | | | | // // | | | | | | | | | | | | | | | 2 - | | // \\ | | | | | | | | | | | | | | | | | // \\ | | | | | | | | | | | | | | | 1 - | | // \ | | | | | | | | | | | | | | | | • | <i>\\</i> | | | | | | | | | | | | | | | 0 | \triangle | | | | | | | | | | | | | | | | 38 | 38.5 39 | 39.5 40 | 40.5 | | | | | | | | | | | | | | | 55.5 | 23.0 | | | | | | | | | | | | | | page 18 of 39 mixed-Xylenes: iis21C13 # Determination of m-Xylene on sample #21181; results in %M/M | lah | mothod | valuo | mark | 7/10 = 0 | romoris | | | | | | | | | | | |--------------------|---------------------------|----------------------|---------|-------------------------|---------|----------|-----|-----|-----|------|-----|------|------|------|------| | lab 52 | method
D7504 | value 24.9906 | mark | z(targ)
-0.04 | remarks | <u> </u> | | | | | | | | | | | 52
150 | D1304 | 24.9906 | | -0.04 | | | | | | | | | | | | | 171 | D7504 | 25.0304 | | 0.28 | | | | | | | | | | | | | 315 | D7504 | 24.98 | | -0.12 | | | | | | | | | | | | | 317 | D7504 | 25.00 | | 0.04 | | | | | | | | | | | | | 323 | D6563 | 24.86 | | -1.07 | | | | | | | | | | | | | 396
445 | D7504
D6563 | 24.88
24.89 | | -0.91
-0.83 | | | | | | | | | | | | | 445
446 | D0003 | 24.09 | | -0.63 | | | | | | | | | | | | | 551 | | | | | | | | | | | | | | | | | 555 | | | | | | | | | | | | | | | | | 558 | | | | | | | | | | | | | | | | | 734 | D7504 | 24.95967 | | -0.28 | | | | | | | | | | | | | 823 | D7504 | 24.9908 | | -0.03 | | | | | | | | | | | | | 862
913 | D7504
D7504 | 25.043
25.0958 | | 0.38
0.80 | | | | | | | | | | | | | 1011 | D5917 | 25.1576 | | 1.29 | | | | | | | | | | | | | 1040 | D7504 | 24.971 | | -0.19 | | | | | | | | | | | | | 1041 | D6563 | 24.99 | | -0.04 | | | | | | | | | | | | | 1081 | D6563 | 25.0046901 | | 0.08 | | | | | | | | | | | | | 1250 | D7504 | 25.1048 | | 0.87 | | | | | | | | | | | | | 1320 | D7504 | 24.85 | | -1.15 | | | | | | | | | | | | | 1434
1530 | D7504
D7504 | 24.98522
24.942 | | -0.08
-0.42 | | | | | | | | | | | | | 1812 | D7304 | 25.14018 | | 1.15 | | | | | | | | | | | | | 6201 | D7504 | 25.55 | R(0.01) | 4.40 | | | | | | | | | | | | | 6262 | D7504 | 24.9594 | , | -0.28 | | | | | | | | | | | | | 6412 | D5917 | 24.97132 | | -0.19 | | | | | | | | | | | | | 7009 | D2306 | 25.089 | | 0.74 | | | | | | | | | | | | | | normality | OK | | | | | | | | | | | | | | | | n | 23 | | | | | | | | | | | | | | | | outliers | 1 | | | | | | | | | | | | | | | | mean (n)
st.dev. (n) | 24.9950
0.08328 | | | | | | | | | | | | | | | | R(calc.) | 0.2332 | | | | | | | | | | | | | | | | st.dev.(D7504:21) | 0.12621 | | | | | | | | | | | | | | | | R(D7504:21) | 0.3534 | 25.7 | | | | | | | | | | | | | | | | | 25.5 - | | | | | | | | | | | | | | | * | | 25.3 - | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | Δ | Δ | _ | | 25.1 - | Δ. | Δ Δ | Δ Δ | Δ Δ | Δ Δ | Δ | Δ | Δ Δ | Δ | Δ | Δ | Δ | | | _ | | 24.9 + A | Δ Δ Δ | | | | | | | | | | | | | | | | 24.7 | | | | | | | | | | | | | | | _ | | 24.5 | | | | | | | | | | | | | | | | | 1320 | 323
396
445
1530 | 6262 | 1040 | 315 | 1041 | 823 | 317 | 171 | 862 | 7009 | 913 | 1250 | 1812 | 1011 | 6201 | | | | | | | | | | | | | | | | | | | 6 T | | Kamal Danak | | | | | | | | | | | | | | | _ | | Kernel Densit | .y | | | | | | | | | | | | | | 5 - | M | | | | | | | | | | | | | | | | | $/ \setminus$ | | | | | | | | | | | | | | | | 4 - | / // | | | | | | | | | | | | | | | | | / \ | | | | | | | | | | | | | | | | 3 - | / // | | | | | | | | | | | | | | | | | / | | | | | | | | | | | | | | | | 2 - | | | | | | | | | | | | | | | | | - | / | | | | | | | | | | | | | | | | . | // \\ | | | | | | | | | | | | | | | | 1 - | // \\ | | | | | | | | | | | | | | | | | / | \wedge | | | | | | | | | | | | | | | 0 24. | 5 25 | 25.5 | 26 | | | | | | | | | | | | | | 24. | J 25 | 25.5 | 20 | | | | | | | | | | | | | mixed-Xylenes: iis21C13 page 19 of 39 # Determination of p-Xylene on sample #21181; results in %M/M | lah | method | value | mark | 7/toral | romorica | , | | | | | | | | | | |--|--|-----------------------------|---------|------------------------|----------|---|-------|----------|------|------|-----|-----|-----|---|---| | lab 52 | method
D7504 | value
34.9920 | mark | z(targ)
0.23 | remarks | | | | | | | | | | | | 150 | D1004 | 34.9920
 | | | | | | | | | | | | | | | 171 | D7504 | 35.0237 | | 0.38 | | | | | | | | | | | | | 315 | D7504 | 34.84 | | -0.53 | | | | | | | | | | | | | 317 | D7504 | 34.97 | | 0.12 | | | | | | | | | | | | | 323
396 | D6563
D7504 | 35.07
34.89 | | 0.61
-0.28 | | | | | | | | | | | | | 445 | D6563 | 35.00 | | 0.27 | | | | | | | | | | | | | 446 | 20000 | | | | | | | | | | | | | | | | 551 | | | | | | | | | | | | | | | | | 555 | | | | | | | | | | | | | | | | | 558 | D7504 | | | | | | | | | | | | | | | | 734
823 | D7504 | 34.958785 | | 0.06 | | | | | | | | | | | | | 862 | D7504
D7504 | 34.9739
34.96 | | 0.13
0.07 | | | | | | | | | | | | | 913 | D7504 | 34.9558 | | 0.04 | | | | | | | | | | | | | 1011 | D5917 | 35.0807 | | 0.67 | | | | | | | | | | | | | 1040 | D7504 | 34.961 | | 0.07 | | | | | | | | | | | | | 1041 | D6563 | 34.945 | | -0.01 | | | | | | | | | | | | | 1081
1250 | D6563
D7504 | 35.0226012
34.8643 | | 0.38
-0.41 | | | | | | | | | | | | | 1320 | D7504
D7504 | 34.85 | | -0.41 | | | | | | | | | | | | | 1434 | D7504 | 34.89339 | | -0.27 | | | | | | | | | | | | | 1530 | D7504 | 34.933 | | -0.07 | | | | | | | | | | | | | 1812 | | 34.91272 | | -0.17 | | | | | | | | | | | | | 6201 | D7504 | 35.67 | R(0.01) | 3.61 | | | | | | | | | | | | | 6262
6412 | D7504
D5917 | 34.9394
34.92911 | | -0.04
-0.09 | | | | | | | | | | | | | 7009 | D2306 | 34.815 | | -0.09 | | | | | | | | | | | | | 7000 | 22000 | 01.010 | | 0.00 | | | | | | | | | | | | | | normality | OK | | | | | | | | | | | | | | | | n | 23 | | | | | | | | | | | | | | | | outliers
mean (n) | 1
34.9470 | et dev (n) | በ በ6884 | | | | | | | | | | | | | | | | st.dev. (n)
R(calc.) | 0.06884
0.1928 | | | | | | | | | | | | | | | | R(calc.)
st.dev.(D7504:21) | 0.1928
0.20006 | | | | | | | | | | | | | | | | R(calc.) | 0.1928 | | | | | | | | | | | | | | | 35.8 | R(calc.)
st.dev.(D7504:21) | 0.1928
0.20006 | | | | | | | | | | | | | | | 35.8 7 | R(calc.)
st.dev.(D7504:21) | 0.1928
0.20006 | | | | | | | | | | | | | * | | 35.6 - |
R(calc.)
st.dev.(D7504:21) | 0.1928
0.20006 | | | | | | | | | | | | | * | | 35.6
35.4 | R(calc.)
st.dev.(D7504:21) | 0.1928
0.20006 | | | | | | | | | | | | | * | | 35.6
35.4
35.2 - | R(calc.)
st.dev.(D7504:21) | 0.1928
0.20006 | | | | | | | Δ | Δ | Δ | Δ | Δ | Δ | ж | | 35.6
35.4
35.2 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006 | Δ Δ | Δ Δ | <u> </u> | Δ Δ | | <u> </u> | Δ | Δ | Δ | Δ | Δ | Δ | x | | 35.6 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | Δ Δ | _ <u>^</u> | <u> </u> | Δ Δ | Α | | Δ | Δ | Δ | Δ | Δ | Δ | ж | | 35.6 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | Δ Δ | Δ Δ | <u> </u> | Δ Δ | | | Δ | Δ | Δ | Δ | Δ | Δ | ж | | 35.6 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | Δ Δ | <u> </u> | Δ Δ | Δ Δ | Α | | Δ | Δ | Δ | Δ | Δ | Δ | x | | 35.6 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | 4 4 A | 41 65 | 4 4 | 40 | • | A | Δ 25 | Δ. | | | | | | | 35.6 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | 6412 | 1041 | 734 | 1040 | 718 | 823 | Δ 29 | Ф | ■ 4 | 471 | 323 | Δ | x | | 35.6 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | 6412 P | G082 | 913 | 1040 | 317 | 823 | Δ 25 | 445 | | | | | | | 35.6 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | | G2622 P | 913 | 982 2 2 2 2 | 317 | A | Δ 25 | 446 | | | | | | | 35.6 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | | G2622 P | 913 | 982 2 2 2 2 | 317 | A | Δ 25 | 446 | | | | | | | 35.6 - 35.4 - 35.2 - 35.5 - 34.8 - 4 34.4 - 34.2 - 34 8000 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | | G2622 PP (1041) | 913 | 1040 | 317 | 823 | Δ 29 | 445 | | | | | | | 35.6 - 35.4 - 35.2 - 35.5 - 34.8 - 4 34.4 - 34.2 - 34 8000 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | | G662
1041 | 913 | 4 4 (040). | 317 | A 853 | Δ | 445 | | | | | | | 35.6 - 35.4 - 35.2 - 35.5 - 34.8 - 4 34.4 - 34.2 - 34 - 6000 - 7 - 6 - | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | | 6662 | 913 | A A (040). | 317 | A 8533 | Δ | 44.5 | | | | | | | 35.6 - 35.4 - 35.2 - 35.5 - 34.8 - 4 34.4 - 34.2 - 34 - 6000 - 7 - 6 - | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | | 6062
1041 | 734 | 040. | 317 | A | Δ 20 | 446 | | | | | | | 35.6 - 35.4 - 35.2 - 36.8 - 34.8 - 34.2 - 34.2 - 34.2 - 34.4 - 5.5 - 4.5 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | | 6888 | 913 | 8662 | 4 | 623 | Δ 20 | 446 | | | | | | | 35.6 - 35.4 - 35.2 - 35.5 - 34.8 - 4 34.2 - 34 800 - 55.5 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | | 6262
1041 | 913 | 8662 | 4 | 823 | 2 50 | 446 | | | | | | | 35.6 - 35.4 - 35.2 - 36.8 - 34.8 - 34.2 - 34.2 - 34.2 - 34.3 - 36.0 - 36 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | | 6282 | 734 | 1040 | 4 215 | 823 | 25 | 446 | | | | | | | 35.6 - 35.4 - 35.2 - 36.8 - 34.8 - 34.2 - 34.2 - 34.2 - 34.4 - 5.5 - 4.5 -
4.5 - 4.5 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | | 4 4 2883 | 734 | 962 2 2 2 2 | 4 216 | A 858 | 25 | 44 5 | | | | | | | 35.6 - 35.4 - 35.2 - 36.8 - 34.8 - 34.2 - 34.2 - 34.3 - 34.2 - 34 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | | 4 4 2823 | 734 | 962 2 2 2 2 | 21.6 | A 853 | 25 | 4465 | | | | | | | 35.6 - 35.4 - 35.2 - 36.8 - 34.8 - 34.2 - 34.2 - 34.2 - 34.3 - 36.0 - 36 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | | 6262 | 734 | 962 Z 2 Z 2 A A A | 3.77 | A | 25 | 445 | | | | | | | 35.6 35.4 35.2 35.2 36.6 36.4 36.6 36.4 34.2 34 | R(calc.)
st.dev.(D7504:21)
R(D7504:21) | 0.1928
0.20006
0.5602 | | 4 4 6000 | 734 | 862 2 2 2 3 | 317 | 833 | Δ 28 | 445 | | | | | | | 35.6 - 35.4 - 35.2 - 36.8 - 34.8 - 34.2 - 34.2 - 34.3 - 34.2 - 34 | R(calc.) st.dev.(D7504:21) R(D7504:21) | 0.1928
0.20006
0.5602 | | 2903 | 913 | 862 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | 317 | A | Δ | 4445 | | | | | | page 20 of 39 mixed-Xylenes: iis21C13 # Determination of sum of m- and p-Xylenes on sample #21181; results in % M/M | la | ab | method | | V | alue | | mar | k | z(targ) | rema | arks | | | | | | | | | | |
--|---|-------------------------------------|----------------|-----------------|----------------------------|--------|------|------|---|--------------|----------|---------|----------|----------|---------|----------|----------|----------|-------|------|----------| | | 52 | D7504 | | | 9.9820 | 6 | mai | | 0.06 | 101110 | | | | | | | | | | | | | 15 | 50 | 17
31 | | D7504 | | | 0.054 | 1 | | | 0.22
-0.29 | | | | | | | | | | | | | | 31 | | D7504
D7504 | | | 9.82
9.97 | | | | -0.29
0.04 | | | | | | | | | | | | | | 32 | | D6563 | | | 0.02 | | С | | 0.15 | first r | eporte | ed 99.8 | 31 | | | | | | | | | | 39 | 96 | | | | | | | | | | • | | | | | | | | | | | | | 45 | D6563 | | 59 | 9.89 | | | | -0.14 | | | | | | | | | | | | | | 44
55 | 55 | 55 | 58 | 73 | | D7504 | | | 9.9184 | | | | -0.08 | | | | | | | | | | | | | | 82
86 | | D7504
D7504 | | | 9.9648
0.003 | | | | 0.03
0.11 | | | | | | | | | | | | | | 91 | | D7504
D7504 | | | 0.003
0.0516 | | | | 0.11 | | | | | | | | | | | | | | 101 | | D5917 | | | 0.238 | | | | 0.62 | | | | | | | | | | | | | | 104 | 40 | | | 59 | 9.932 | | | | -0.05 | | | | | | | | | | | | | | 104 | | D6563 | | | 9.94 | | | | -0.03 | | | | | | | | | | | | | | 108 | | D6563 | | | 0.0069 | | | | 0.12 | | | | | | | | | | | | | | 125
132 | | D7504
D7504 | | | 9.969 [.]
9.70 | 1 | | | 0.04
-0.55 | | | | | | | | | | | | | | 143 | 20
34 | D7504 | | | 9.70
9.8780 | 61 | | | -0.33 | | | | | | | | | | | | | | 153 | 30 | D7504 | | | 9.870 | | | | -0.18 | | | | | | | | | | | | | | 181 | 12 | | | 60 | 0.0529 | | | | 0.22 | | | | | | | | | | | | | | 620 | | D7504 | | | 1.22 | _ | R(0. | .01) | 2.77 | | | | | | | | | | | | | | 626
641 | | D7504
D5917 | | | 9.8988
9.9004 | | | | -0.12
-0.11 | | | | | | | | | | | | | | 700 | | D2306 | | | 9.900.
9.904 | | | | -0.11 | • | | | | | | | | | | | | | | | | normality | | | ot OK | n | | 22 | outliers
mean (n) | | 1
59 | 9.9530 | 0 | | | | | | | | | | | | | | | | | | | st.dev. (n) | U. | 1048 | 3 | | | | | | | | | | | | | | | | | | | R(calc.) | | 0. | 2935 | R(calc.)
st.dev.(D7 | '504:21 | 0.
) 0. | .2935
.4576 | 5 | | | | | | | | | | | | | | | | | | | R(calc.) | '504:21 | 0.
) 0. | 2935 | 5 | | | | | | | | | | | | | | | | | 62 T | | R(calc.)
st.dev.(D7 | '504:21 | 0.
) 0. | .2935
.4576 | 5 | | | | | | | | | | | | | | | | | 62 T
61.5 | | R(calc.)
st.dev.(D7 | '504:21 | 0.
) 0. | .2935
.4576 | 5 | | | | | | | | | | | | | | | | | 61.5 +
61 + | _ | R(calc.)
st.dev.(D7 | '504:21 | 0.
) 0. | .2935
.4576 | 5 | | | | | | | | | | | | | | | * | | 61.5 +
61 +
60.5 + | _ | R(calc.)
st.dev.(D7 | '504:21 | 0.
) 0. | .2935
.4576 | 5 | | | | | | | | | | | | | | Δ | <u>*</u> | | 61.5 -
61 -
60.5 -
60 - | | R(calc.)
st.dev.(D7 | '504:21 | 0.
) 0. | .2935
.4576 | 5 | Δ | Δ. | Δ Δ | <u> </u> | | | | | | | Δ | Δ | Δ | Δ | * | | 61.5 +
61 +
60.5 + | | R(calc.)
st.dev.(D7
R(D7504:: | '504:21 | 0.
) 0. | .2935
.4576 | 5 | Δ | Δ | Δ Δ | | Δ | Δ | | Δ | Δ. | Δ. | Δ | Δ | Δ | Δ | <u>*</u> | | 61.5 -
61 -
60.5 -
60 -
59.5 - | | R(calc.)
st.dev.(D7
R(D7504:: | '504:21 | 0.
) 0. | .2935
.4576 | 5 | Δ | Δ | Δ Δ | Δ | <u> </u> | | | | Δ | Δ | Δ | Δ | Δ | Δ | * | | 61.5 -
61 -
60.5 -
60 -
59.5 -
59 -
58.5 - |
 | R(calc.)
st.dev.(D7
R(D7504:: | '504:21 | 0.
) 0. | .2935
.4576 | 5 | Δ | Δ | Δ Δ | <u> </u> | Δ | | | | | Δ | Δ | <u> </u> | Δ | Δ | * | | 61.5 61 60.5 60 59.5 59 58.5 58 57.5 |
 | R(calc.)
st.dev.(D7
R(D7504:: | '504:21 | 0.
) 0. | .2935
.4576 | 5 | Δ | Δ | Δ Δ | <u> </u> | | Δ | | Δ | A | A | Δ | Δ | Δ | Δ | * | | 61.5 -
61 -
60.5 -
60 -
59.5 -
59 -
58.5 - | 1320 | R(calc.)
st.dev.(D7
R(D7504:: | '504:21 | 0.
) 0. | .2935
.4576 | Δ | ٨٥٥٥ | 734 | 000 | 823 | 4 052. | 347 | A | 862 | A 1901 | 323 | A | I812 | 171 | | * | | 61.5 61 60.5 60 59.5 59 58.5 58 57.5 | _ | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0
0
1 | 2935
4576;
2814 | 5 | 4 | 734 | 1040 | 823 | 4250 | 317 | - A | 888 | 1081 | 323 | 913 | 4812 | 171 | 1001 | X | | 61.5 61 60.5 60 59.5 59 58.5 58 57.5 | 1320 | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935,4576;2814 | 6413 | | 734 | 1040 | 823 | 1280 | 317 | 25 | A | 4 | 323 | A | A | 4 | | * 1000 | | 61.5 - 61 - 60.5 - 60 - 59.5 - 59 - 58.5 - 57.5 - 57 - 67.5 - 67. | 1320 | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935,4576;2814 | Δ | | 734 | 1040 | 823 | 1250 | 217 | \$ 25 | 962 | A 180). | 323 | Δ | (812 | A 125 | | * 1000 | | 61.5 - 61 - 60.5 - 60 - 59.5 - 59 - 58.5 - 57 - 57 - 4.5 | 5 | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935,4576;2814 | 6413 | | 734 | 1040 | 823 | 4 | 317 | \$ 25 | 895 | A | 323 | Δ | 69.12 | 4 | | X 1000 | | 61.5 - 61 - 60.5 - 60 - 59.5 - 59 - 58.5 - 57.5 - 57 - 67.5 -
67.5 - 67. | 5 | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935,4576;2814 | 6413 | | 734 | 1040 | 823 | 4 0520 | 317 | \$ 25 | 805 | A | 323 | A C1:6 | 69.12 | 4 | | X 1000 | | 61.5 - 61 - 60.5 - 60 - 59.5 - 59 - 58.5 - 57.5 - 57 - 57 - 57 - 57 - 57 - 57 | 5 - | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935,4576;2814 | 6413 | | 734 | 1040 | 4 | 1250 | 347 | \$ 28 | Α | A | 323 | A A | Z 199. | 471 | | X 1020 | | 61.5 - 61 - 61.5 - 60.5 - 60 - 59.5 - 58 - 58 - 57.5 - 57 | 5 T 4 - 5 - 33 - | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935,4576;2814 | 6413 | | 734 | 1040 | 4 | 1250 | 347 | \$ 28 | 982 | A | 323 | A A | Z (9) | 471 | | X 1000 | | 61.5 - 61 - 60.5 - 60 - 59.5 - 59 - 58.5 - 57.5 - 57 - 57 - 57 - 57 - 57 - 57 | 5 T 4 - 5 - 33 - | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935,4576;2814 | 6413 | | 234 | 1040 | 823 | 4 0520 | 317 | 25 | 8002 | Δ (190) | A A | A 616 | 1812 | 121 | | X 1020 | | 61.5 - 61 - 61.5 - 60 - 60.5 - 60 - 59.5 - 58 - 57.5 - 57 - 57 - 57 - 57 - 57 - 57 - | 5 - 3 - 5 - | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935,4576;2814 | 6413 | | 734 | 0100 | 823 | 0527 | 317 | 25 | 4 | 1061 | A 233 | A 616 | 1812 | 1/1 | | X | | 61.5 - 61 - 61.5 - 61.5 - 60.5 - 60.5 - 59.5 - 59.5 - 58.5 - 57.5 | 002EF
5 - 44 | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935,4576;2814 | 6413 | | 734 | 0001 | 823 | 4 0521 | 314 | 25 | 4 | V 1981 | A A | A | 1812 | 1/1 | | X | | 61.5 - 61 - 61.5 - 60 - 60.5 - 60 - 59.5 - 58 - 57.5 - 57 - 57 - 57 - 57 - 57 - 57 - | 002EF
5 - 44 | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935,4576;2814 | 6413 | | 734 | 01000 | 823 | 4 0521 | 214 | 25 | A | 1800) | 323 | A 613 | 1912 | 171 | | X | | 61.5 - 61 - 61.5 - 60.5 - 60 - 59.5 - 59 - 58.5 - 57 - 57 - 57 - 57 - 57 - 57 - 57 - | 002EF
5 - 44 | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935,4576;2814 | 6413 | | 734 | 0401 | \$228 | 1250 | 317 | 25 | A | 18001 | 333 | Ø 913 | (812) | 121 | | X | | 61.5 - 61 - 60.5 - 60 - 59.5 - 58 - 57.5 - 57 - 57 - 57 - 57 - 57 - 57 - | 00EE | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935,4576;2814 | 6413 | | 734 | 1040 | €28 | 1250 | 317 | 25 | A | 18001 | 333 | 4 | (812) | 144 | | x | | 61.5 - 61 - 61.5 - 60.5 - 60 - 59.5 - 59 - 58.5 - 57 - 57 - 57 - 57 - 57 - 57 - 57 - | 00EE | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935,4576;2814 | 6413 | | 734 | 0040 | 623 | 4 0521 | 314 | 82 | 250 | 1804 | 333 | 0.00 | 21,99 | 1211 | | X | | 61.5 - 61 - 61.5 - 61 - 60.5 - 60 - 59.5 - 59 - 58.5 - 58 - 57.5 - 57 - 60 - 60 - 60 - 60 - 60 - 60 - 60 - 6 | 5 - 3 - 5 - 1 - 5 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 | R(calc.)
st.dev.(D7
R(D7504:: | 7504:21 | \$\frac{1}{2}\$ | 2935
45769
2814 | Densit | ty | | 1040 | → 683 | 4 0521 | 317 | 252 | 888 | 1001 | 333 | a | 1812 | 14.1 | | X | | 61.5 - 61 - 61.5 - 61 - 60.5 - 60 - 59.5 - 59 - 58.5 - 58 - 57.5 - 57 - 60 - 60 - 60 - 60 - 60 - 60 - 60 - 6 | 5 T 4 - 5 - 11 - 5 - 5 - 5 - 11 - 5 - 5 - 5 - | R(calc.)
st.dev.(D7
R(D7504: | 7504:21
21) | 0. 1. | 2935
45769
2814 | 6413 | | | 1040 | 823 | 082. | 317 | 25 | 890 | 1805 | A | A | 1812 | 12.1 | | X | mixed-Xylenes: iis21C13 page 21 of 39 # Determination of Total mixed-Xylenes on sample #21181; results in %M/M | lab | method | value | mark | z(targ) | remarks | |-------|-------------------|-----------|---------|---------|---------| | 52 | D7504 | 99.7651 | | -0.01 | | | 150 | | | | | | | 171 | D7504 | 99.7616 | | -0.01 | | | 315 | D7504 | 99.79 | | 0.00 | | | 317 | D7504 | 99.8 | | 0.01 | | | 323 | D6563 | 99.81 | | 0.01 | | | 396 | | | | | | | 445 | D6563 | 99.78 | | 0.00 | | | 446 | | | | | | | 551 | | | | | | | 555 | | | | | | | 558 | | | | | | | 734 | D7504 | 99.77459 | | 0.00 | | | 823 | D7504 | 99.7903 | | 0.00 | | | 862 | D7504 | 99.814 | | 0.02 | | | 913 | D7504 | 99.8988 | R(0.05) | 0.06 | | | 1011 | D5917 | 99.7799 | | 0.00 | | | 1040 | | 99.753 | | -0.02 | | | 1041 | D6563 | 99.77 | | -0.01 | | | 1081 | D6563 | 99.761414 | | -0.01 | | | 1250 | D7504 | 99.8391 | | 0.03 | | | 1320 | D7504 | 99.79 | | 0.00 | | | 1434 | D7504 | 99.78419 | | 0.00 | | | 1530 | D7504 | 99.832 | | 0.02 | | | 1812 | | 99.69411 | R(0.05) | -0.05 | | | 6201 | D7504 | 99.75 | | -0.02 | | | 6262 | D7504 | 99.7610 | | -0.01 | | | 6412 | D5917 | 99.76773 | | -0.01 | | | 7009 | D2306 | 99.798 | | 0.01 | | | | normality | OK | | | | | | n | 21 | | | | | | outliers | 2 | | | | | | mean (n) | 99.7844 | | | | | | st.dev. (n) | 0.02457 | | | | | | R(calc.) | 0.0688 | | | | | | st.dev.(D7504:21) | 1.95791 | | | | | | R(D7504:21) | 5.4821 | | | | | | • | | | | | | 108 - | | | | | | page 22 of 39 mixed-Xylenes: iis21C13 # Determination of iso-Propyl Benzene (Cumene) on sample #21181; results in %M/M | lab | method | | val | ue | | mark | | z(targ) |) r | emark | s | | | | | | | | | | |-------------------|----------------------|-----------|------------|------------|--------|--------|------|---------------|--------|-------|------|-----|------|------|------|-----|------|------|-----|------| | 52 | D7504 | | | 080 | | | | 0.26 | | JWIN | _ | | | | | | | | | | | 150 | | | | - | | | | | - | | | | | | | | | | | | | 171 | D7504 | | | 109 | | | | 0.89 | | | | | | | | | | | | | | 315
317 | D7504
D7504 | | 0.1 | 071
988 | | | | 0.06
-1.74 | | | | | | | | | | | | | | 323 | D7504
D6563 | | 0.0 | | | | | -1.74 | | | | | | | | | | | | | | 396 | 20000 | | | | | | | -1.40 | | | | | | | | | | | | | | 445 | D2360 | | 0.1 | | | | | 0.69 | | | | | | | | | | | | | | 446 | | | | - | | | | | | | | | | | | | | | | | | 551 | | | | - | | | | | • | | | | | | | | | | | | | 555
558 | | | | - | | | | | • | | | | | | | | | | | | | 734 | D7504 | | 0.1 | -
0802 | | | | 0.26 | -
} | | | | | | | | | | | | | 823 | D7504 | | | 066 | | | | -0.05 | | | | | | | | | | | | | | 862 | D7504 | | | 085 | | | | 0.37 | 7 | | | | | | | | | | | | | 913 | D7504 | | | 924 | | DG(0 | .05) | -3.13 | 3 | | | | | | | | | | | | | 1011
1040 | D5917
D7504 | | | 081 | | | | 0.28
0.47 | | | | | | | | | | | | | | 1040 | D7504
D6563 | | 0.1
0.1 | | | | | 0.47 | ,
) | | | | | | | | | | | | | 1041 | D6563 | | | 07108 | 3 | | | 0.06 | | | | | | | | | | | | | | 1250 | | | | - | - | | | | - | | | | | | | | | | | | | 1320 | D7504 | | 0.1 | | | | | -1.48 | 3 | | | | | | |
 | | | | | 1434 | D7504 | | | 1008 | | | | 0.71 | | | | | | | | | | | | | | 1530 | D7504 | | | 939 | | DG(0 | | -2.80 | | | | | | | | | | | | | | 1812
6201 | D7504 | | 0.1 | 3799
ng | | G(0.0 | 11) | 6.77
0.47 | | | | | | | | | | | | | | 6262 | D7504 | | | 070 | | | | 0.04 | | | | | | | | | | | | | | 6412 | D5917 | | 0.1 | 0929 | | | | 0.54 | ļ | | | | | | | | | | | | | 7009 | D2306 | | 0.1 | | | | | -1.05 | 5 | | | | | | | | | | | | | | normality | | OK | n | | 19 | outliers
mean (n) | | 3 | 068 | | | | | | | | | | | | | | | | | | | st.dev. (n) | | | 0374 | | | | | | | | | | | | | | | | | | | R(calc.) | | | 105 | | | | | | | | | | | | | | | | | | | st.dev.(D750 | | | 0461 | | | | | | | | | | | | | | | | | | | R(D7504:21 |) | 0.0 | 129 | | | | | | | | | | | | | | | | | | 0.15 _T | 0.14 | × | | 0.13 + | 0.12 | 0.11 | | | | | | | | | | | | ^ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | | | Δ | Δ | Δ | Δ | | | | | | | | | | | | | | | | | 0.1 | ж | | Δ | | | | | | | | | | | | | | | | | | | 0.09 | 0.08 | 1530 | 323 | 1320 | 7009 | 823 | 6262 | 315 | 1081 | 52 | 734 | 1011 | 862 | 1040 | 6201 | 6412 | 445 | 1041 | 1434 | 171 | 1812 | | 120 T | | | | | | \neg | | | | | | | | | | | | | | | | | | | Ke | ernel D | ensity | , | | | | | | | | | | | | | | | | 100 | | Λ | | _ | , | 00 | | ٨ | 80 - | 60 - | 40 - |) | / | ' | | | | | | | i . | | | | | | | | | | | | | | | 20 - | | - 1 | 20 - | | | _ | | | | | | | | | | | | | | | | | | | 0 | | | \wedge | _ | | | | | | | | | | | | | | | | | | | 5 0.1 | 1 | 0 | 1.15 | | 0.2 | | | | | | | | | | | | | | | mixed-Xylenes: iis21C13 page 23 of 39 # Determination of sum of C9 and heavier aromatics on sample #21181; results in %M/M | | | <u> </u> | | | | | | | | | | | | | |-----------------------------|--|---|--------------|---------------|--------|---|--------------|-------|------|------|------|----------|---|---| | lab | method
D7504 | value
0.1497 | mark | z(targ) | remark | S | | | | | | | | | | 52
150 | D7504 | 0.1497 | | -0.03
 | | | | | | | | | | | | 171 | D7504 | 0.1644 | | 0.89 | | | | | | | | | | | | 315 | D7504 | 0.152 | | 0.11 | | | | | | | | | | | | 317 | D7504 | 0.1332 | | -1.06 | | | | | | | | | | | | 323
396 | D6563 | 0.14
 | | -0.64
 | | | | | | | | | | | | 445 | D6563 | 0.15 | | -0.01 | | | | | | | | | | | | 446 | | | | | | | | | | | | | | | | 551 | | | | | | | | | | | | | | | | 555
550 | | | | | | | | | | | | | | | | 558
734 | D7504 |
0.15688 | | 0.42 | | | | | | | | | | | | 823 | D7504 | 0.1454 | | -0.30 | | | | | | | | | | | | 862 | D7504 | 0.1534 | | 0.20 | | | | | | | | | | | | 913 | D7504 | 0.042433 | R(0.01) | -6.74 | | | | | | | | | | | | 1011
1040 | D7504 | 0.026 | R(0.01) |
-7.77 | | | | | | | | | | | | 1040 | D6563 | 0.16 | 11(0.01) | 0.61 | | | | | | | | | | | | 1081 | D6563 | 0.1402847 | | -0.62 | | | | | | | | | | | | 1250 | | | | | | | | | | | | | | | | 1320
1434 | D7504
D7504 | 0.14
0.16072 | | -0.64
0.66 | | | | | | | | | | | | 1530 | D7504
D7504 | 0.16072 | | -2.77 | | | | | | | | | | | | 1812 | 27001 | 0.20533 | | 3.45 | | | | | | | | | | | | 6201 | D7504 | 0.161 | | 0.67 | | | | | | | | | | | | 6262 | D7504 | 0.1280 | | -1.39 | | | | | | | | | | | | 6412
7009 | D5917
D2306 | 0.16078
0.147 | | 0.66
-0.20 | | | | | | | | | | | | 7000 | D2000 | 0.147 | | 0.20 | | | | | | | | | | | | | normality | not OK | | | | | | | | | | | | | | | n
outliers | 19
2 | | | | | | | | | | | | | | | mean (n) | 0.15021 | | | | | | | | | | | | | | | st.dev. (n) | 0.019463 | R(calc.) | 0.05450 | | | | | | | | | | | | | | | st.dev.(Horwitz) | 0.05450
0.015985 | | | 1 comp | onente | | | | | | | | | | Comp | st.dev.(Horwitz)
R(Horwitz) | 0.05450 | | | 4 comp | onents | | | | | | | | | | Comp | st.dev.(Horwitz)
R(Horwitz) | 0.05450
0.015985 | | | 4 comp | onents | | | | | | | | | | | st.dev.(Horwitz)
R(Horwitz)
are | 0.05450
0.015985
0.04476 | | | 4 comp | onents | | | | | | | | | | Comp _{0.25} | st.dev.(Horwitz)
R(Horwitz)
are | 0.05450
0.015985
0.04476 | | | 4 comp | onents | | | | | | | | | | 0.25 T | st.dev.(Horwitz)
R(Horwitz)
are | 0.05450
0.015985
0.04476 | | | 4 comp | onents | | | | | | | | Δ | | | st.dev.(Horwitz)
R(Horwitz)
are | 0.05450
0.015985
0.04476 | | | 4 comp | onents | | | | | | | | | | 0.25 T | st.dev.(Horwitz)
R(Horwitz)
are | 0.05450
0.015985
0.04476
0.08490 | | Δ 4 | 4 comp | onents | | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.25 — | st.dev.(Horwitz)
R(Horwitz)
are | 0.05450
0.015985
0.04476 | Δ Δ | Δ 4 | 4 comp | onents | Δ. | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.25 — | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | Δ Δ | Δ 4 | 4 comp | onents | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.25 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | Δ Δ | Δ 4 | 4 comp | onents | • | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.25 — 0.2 — 0.15 — — | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | Δ Δ | Δ 4 | 4 comp | onents | ٨ | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.25 T 0.2 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | | | | Δ Δ | Δ | | | | | | | | | 0.25 T 0.2 0.15 0.1 0.05 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1330
1081 | A 4 | | onents 4 4 9 9 9 9 9 9 9 9 9 9 9 | A 288 | ₩ 224 | 1041 | 1434 | 6412 | ₽ | Δ | A | | 0.25 T | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | | | | Δ Δ | A | | | | | | | | | 0.25 T 0.2 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1320 | | | Δ Δ | A 288 | | | | | | | | | 0.25 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1320 | | | Δ Δ | 208 | | | | | | | | | 0.25 T | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1320 | | | Δ Δ | 2298 | | | | | | | | | 0.25 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1320 | | | Δ Δ | 288 | | | | | | | | | 0.25 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1320 | | | Δ Δ | 298 | | | | | | | | | 0.25 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1320 | | | Δ Δ | A 2008 | | | | | | | | | 0.25 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1320 | | | Δ Δ | 239 | | | | | | | | | 0.25 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1320 | | | Δ Δ | A | | | | | | | | | 0.25 0.2 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1320 | | | Δ Δ | A 788 | | | | | | | | | 0.25 0.2 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1320 | | | Δ Δ | Z88 | | | | | | | | | 0.25 0.2 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1320 | | | Δ Δ | A 288 | | | | | | | | | 0.25 0.2 | st.dev.(Horwitz)
R(Horwitz)
are
R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1320 | | | Δ Δ | 2298 | | | | | | | | | 0.25 0.2 | st.dev.(Horwitz) R(Horwitz) are R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | nsity 1801 | | | Δ Δ | 228 | | | | | | | | | 0.25 0.2 | st.dev.(Horwitz) R(Horwitz) are R(D7504:21) | 0.05450
0.015985
0.04476
0.08490 | 1320 | | | Δ Δ | 2008 | | | | | | | | page 24 of 39 mixed-Xylenes: iis21C13 # Determination of Non-aromatics on sample #21181; results in %M/M | lab | method | value | mark | z(targ) | remark | rs | | | | | | | | | |
---|-------------------------|---------------------|---------|-----------------|--------|-----------|-----|------|------|-----|------|--------|-------|-----|-------| | 52 | D7504 | 0.0499 | IIIai K | 2(targ)
0.71 | remari | | | | | | | | | | | | 150 | | | | | | | | | | | | | | | | | 171 | D7504 | 0.0493 | | 0.64 | | | | | | | | | | | | | 315
317 | D7504
D7504 | 0.041
0.0364 | | -0.34
-0.89 | | | | | | | | | | | | | 323 | D6563 | 0.0304 | | -0.46 | | | | | | | | | | | | | 396 | D7504 | 0.0404 | | -0.42 | | | | | | | | | | | | | 445 | D2360 | 0.051 | | 0.84 | | | | | | | | | | | | | 446 | | | | | | | | | | | | | | | | | 551
555 | | | | | | | | | | | | | | | | | 558 | | | | | | | | | | | | | | | | | 734 | D7504 | 0.06026 | | 1.94 | | | | | | | | | | | | | 823 | D7504 | 0.0453 | | 0.17 | | | | | | | | | | | | | 862
913 | D7504
D7504 | 0.0266
0.040025 | | -2.05
-0.46 | | | | | | | | | | | | | 1011 | D5917 | 0.040023 | | -3.10 | | | | | | | | | | | | | 1040 | D7504 | 0.064 | | 2.38 | | | | | | | | | | | | | 1041 | D6563 | 0.05 | | 0.72 | | | | | | | | | | | | | 1081 | D6563 | 0.0397742 | | -0.49
 | | | | | | | | | | | | | 1250
1320 | D7504 | 0.04 | | -0.46 | | | | | | | | | | | | | 1434 | D7504 | 0.04562 | | 0.20 | | | | | | | | | | | | | 1530 | D7504 | 0.0514 | | 0.89 | | | | | | | | | | | | | 1812 | D7504 | 0.02474 | | -2.27
1.55 | | | | | | | | | | | | | 6201
6262 | D7504
D7504 | 0.057
0.0589 | | 1.55
1.78 | | | | | | | | | | | | | 6412 | D5917 | 0.05040 | | 0.77 | | | | | | | | | | | | | 7009 | D2306 | 0.030 | | -1.65 | | | | | | | | | | | | | | normality | OK | | | | | | | | | | | | | | | | n | 23 | | | | | | | | | | | | | | | | outliers | 0 | | | | | | | | | | | | | | | | mean (n) | 0.04391 | | | | | | | | | | | | | | | | st.dev. (n)
R(calc.) | 0.011687
0.03272 | | | | | | | | | | | | | | | | st.dev.(Horwitz) | 0.008434 | | | | | | | | | | | | | | | | R(Horwitz) | 0.02361 | | | 9 comp | onente | | | | | | | | | | | | | | | | | Officials | | | | | | | | | | | Compa | are
R(D7504·21) | 0 00511 | | | | onenta | | | | | | | | | | | Compa | are
R(D7504:21) | 0.00511 | | | | onenta | | | | | | | | | | | 0.08 T | are
R(D7504:21) | 0.00511 | | | | - Inches | | | | | | | | | | | | are
R(D7504:21) | 0.00511 | | | | | | | | | | | | | | | 0.08 T | are
R(D7504:21) | 0.00511 | | | | | | | | | | | Δ | Δ | | | 0.08 0.07 | are
R(D7504:21) | 0.00511 | | | | | Δ Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.08 T
0.07 | are
R(D7504:21) | Δ Δ | Δ | Δ Δ | Δ | | Δ Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.08 T
0.07
0.06 | are
R(D7504:21) | | Δ | Δ Δ | | | Δ Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.08 T
0.07
0.06
0.05 | R(D7504:21) | Δ Δ | Δ | Δ Δ | | | Δ Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | 0.08 T
0.07 | R(D7504:21) | Δ Δ | Δ | Δ Δ | | | Δ Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.08 | R(D7504:21) | Δ Δ Δ | | | Δ Δ | Δ | | | | | | | | Δ | | | 0.08 T
0.07 | R(D7504:21) | Δ Δ | | | | Δ | A A | 1041 | 6412 | 445 | 1530 | ₽ 1029 | €2020 | 734 | 10401 | | 0.08 | R(D7504:21) | Δ Δ Δ | | | Δ Δ | Δ | | | | | | | | 734 | | | 0.08 0.07 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.0 | R(D7504:21) | Δ Δ Δ | 1320 | | Δ Δ | Δ | | | | | | | | 734 | | | 0.08 0.07 0.06 0.06 0.05 0.04 0.03 0.02 0.01 0. | R(D7504:21) | 377 | 1320 | | Δ Δ | Δ | | | | | | | | 4 | | | 0.08 0.07 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.0 | R(D7504:21) | 377 | 1320 | | Δ Δ | Δ | | | | | | | | 734 | | | 0.08 0.07 0.06 0.06 0.06 0.06 0.07
0.07 0.0 | R(D7504:21) | 377 | 1320 | | Δ Δ | Δ | | | | | | | | 427 | | | 0.08 0.07 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0.03 0.01 0. | R(D7504:21) | 377 | 1320 | | Δ Δ | Δ | | | | | | | | 734 | | | 0.08 0.07 0.06 0.06 0.06 0.06 0.07 0.0 | R(D7504:21) | 377 | 1320 | | Δ Δ | Δ | | | | | | | | 467 | | | 0.08 0.07 0.06 0.05 0.04 0.03 0.01 0. | R(D7504:21) | 377 | 1320 | | Δ Δ | Δ | | | | | | | | 734 | | | 0.08 0.07 0.06 0.06 0.05 0.04 0.03 0.02 0.01 0.05 0.04 0.03 0.02 0.01 0.05 0. | R(D7504:21) | 377 | 1320 | | Δ Δ | Δ | | | | | | | | 734 | | | 0.08 0.07 0.06 0.05 0.04 0.03 0.01 0. | R(D7504:21) | 377 | 1320 | | Δ Δ | Δ | | | | | | | | 734 | | | 0.08 0.07 0.06 0.06 0.06 0.06 0.07
0.07 0. | R(D7504:21) | 377 | 1320 | | Δ Δ | Δ | | | | | | | | 734 | | | 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.01 0.03 0.02 0.01 0. | R(D7504:21) | 377 | 1320 | | Δ Δ | Δ | | | | | | | | 457 | | | 0.08 0.07 0.06 0.06 0.06 0.06 0.07 0. | R(D7504:21) | 377 | 1320 | | Δ Δ | Δ | | | | | | | | 462 | | | 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 0.05 0.04 0.03 0.02 0.01 0 0 0 0 0 0 0 0 0 | R(D7504:21) | 377 | nsity | | Δ Δ | Δ | | | | | | | | 4 | | mixed-Xylenes: iis21C13 page 25 of 39 # Determination of Benzene on sample #21182; results in %M/M | | | | - | | | | | | | | | | | | |--------------|-------------------------------|-----------------------|------|--------------|-----|------|----|------|-----|------|-----|-----|-----|------| | lab | method | value | mark | z(targ | | rks | | | | | | | | | | 52
150 | D7504 | 0.0046 | | -0.0 | | | | | | | | | | | | 171 | D7504 | 0.0056 | | 0.2 | | | | | | | | | | | | 315 | D7504 | 0.0044 | | -0.0 | | | | | | | | | | | | 317 | D7504 | 0.0041 | | -0.1 | | | | | | | | | | | | 323 | D6563 | < 0.01 | | | | | | | | | | | | | | 396 | D7504 | 0.0032 | | -0.3 | | | | | | | | | | | | 445 | D2360 | 0.006 | | 0.3 | | | | | | | | | | | | 446
551 | | | | | - | | | | | | | | | | | 555 | | | | | - | | | | | | | | | | | 558 | | | | | | | | | | | | | | | | 734 | D7504 | 0.004775 | | 0.0 | 3 | | | | | | | | | | | 823 | D7504 | 0.0040 | | -0.1 | | | | | | | | | | | | 862 | D7504 | 0.0066 | | 0.5 | | | | | | | | | | | | 913
1011 | D7504
D5917 | 0.00425
0.0034 | | -0.1
-0.3 | | | | | | | | | | | | 1040 | D7504 | 0.0034 | | 0.6 | | | | | | | | | | | | 1041 | D6563 | <0,01 | | | | | | | | | | | | | | 1081 | D6563 | 0.0043378 | | -0.0 | | | | | | | | | | | | 1250 | | | | | - | | | | | | | | | | | 1320 | D7504 | < 0.01 | | | | | | | | | | | | | | 1434
1530 | D7504 | 0.00471 | | 0.0
-0.1 | | | | | | | | | | | | 1812 | D7504 | 0.0041
0.004492 | | -0.0 | | | | | | | | | | | | 6201 | | | | -0.0 | | | | | | | | | | | | 6262 | D7504 | 0.0049 | | 0.0 | 3 | | | | | | | | | | | 6412 | D5917 | 0.00408 | | -0.1 | | | | | | | | | | | | 7009 | D2306 | 0.004 | | -0.1 | 7 | | | | | | | | | | | | normality | suspect | | | | | | | | | | | | | | | n | 19 | | | | | | | | | | | | | | | outliers | 0 | | | | | | | | | | | | | | | mean (n) | 0.00466 | | | | | | | | | | | | | | | st.dev. (n) | 0.000997 | | | | | | | | | | | | | | | R(calc.)
st.dev.(D7504:21) | 0.00279
) 0.003884 | | | | | | | | | | | | | | | R(D7504:21) | 0.01087 | 0.018 T | | | | | | | | | | | | | | | | 0.016 | | | | | | | | | | | | | | | | 0.014 + | | | | | | | | | | | | | | | | 0.012 | | | | | | | | | | | | | | | | 0.01 | | | | | | | | | | | | | | | | 0.008 + | | | | | | | | | | | | | Δ | Δ | | 0.006 + | | | | | | | | | | Δ | Δ | Δ | | | | 0.004 | Δ Δ | Δ Δ Δ | Δ | Δ | Δ Δ | ^ | _ | _ | | | | | | | | 0.002 | | | | | | | | | | | | | | | | 908 | 1011 | 6412 | 1530 | 913 | 315 | 1812 | 52 | 1434 | 734 | 6262 | 171 | 445 | 862 | 1040 | | 700 T | | | | | | | | | | | | | | | | '00 T | | Kamal Danai | 4 | | | | | | | | | | | | | 600 - | \wedge | Kernel Densi | ty | | | | | | | | | | | | | | /\ | | | | | | | | | | | | | | | 500 - | / \ | | | | | | | | | | | | | | | | / \ | | | | | | | | | | | | | | | 400 - | | \ | | | | | | | | | | | | | | | / \ | | | | | | | | | | | | | | | 300 - | / | \ | | | | | | | | | | | | | | | / | | | | | | | | | | | | | | | 200 - | | | | | | | | | | | | | | | | 100 - | | \mathcal{W} | | | | | | | | | | | | | | .55 | / | // | | | | | | | | | | | | | | 0 + | | | | | | | | | | | | | | | | 0 | 0.002 0.004 | 0.006 0.008 | 0.01 | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | page 26 of 39 mixed-Xylenes: iis21C13 # Determination of Toluene on sample #21182; results in %M/M | lab | method | | \/O | lue | | mar | ele . | =/tora | | remark | ' 0 | | | | | | | | | | | |---|---|-----|-------------------|------------------------------------|--------------|------|-------|--------------------|----------|--------------|------------|---------------|----------
-----------|------|-------|---|---|-----|------|--------| | 52 | | | | 0103 | | mar | K | z(targ 0.49 | | emari | ıs | | | | | | | | | | | | 150 |) | 171 | I D7504 | | | 0109 | | | | 1.24 | | | | | | | | | | | | | | | 315 | | | | 0099 | | | | -0.02 | | | | | | | | | | | | | | | 317
323 | | | 0.0 | 0090 | | | | -1.15
0.11 | | | | | | | | | | | | | | | 396 | | | | 0107 | | | | 0.1 | | | | | | | | | | | | | | | 445 | | | | 011 | | | | 1.37 | | | | | | | | | | | | | | | 446 | | | | | | | | | - | | | | | | | | | | | | | | 551 | | | | | | | | | - | | | | | | | | | | | | | | 555
558 | | | | | | | | | - | | | | | | | | | | | | | | 734 | | | 0.0 |
01012 | 25 | | | 0.27 | | | | | | | | | | | | | | | 823 | B D7504 | | | 0095 | | | | -0.52 | | | | | | | | | | | | | | | 862 | | | | 0104 | | | | 0.6 | | | | | | | | | | | | | | | 913 | | | | 00840 |) | | | -1.9 | | | | | | | | | | | | | | | 1011
1040 | | | | 0087
011 | | | | -1.53
1.37 | | | | | | | | | | | | | | | 1040 | | | 0.0 | | | | | 0.1 | | | | | | | | | | | | | | | 1081 | D6563 | | 0.0 | 00970 | 58 | | | -0.26 | 6 | | | | | | | | | | | | | | 1250 | | | | 0093 | | | | -0.77 | | | | | | | | | | | | | | | 1320 | | | 0.0 | | , | | | 0.1 | | | | | | | | | | | | | | | 1434
1530 | | | | 01017
0090 | | | | 0.32
-1.15 | | | | | | | | | | | | | | | 1812 | | | | 00959 |)4 | | | -0.40 | | | | | | | | | | | | | | | 6201 | | | | 0116 | | | | 2.12 | 2 | | | | | | | | | | | | | | 6262 | | | | 0099 | | | | -0.02 | | | | | | | | | | | | | | | 6412
7009 | | | | 00973
009 | 5 | | | -0.23
-1.15 | | | | | | | | | | | | | | | 7000 | D2300 | | | | | | | -1.10 | , | | | | | | | | | | | | | | | normality | | Oł | n
outliere | | 24 | outliers
mean (n) | | 0 | 00991 | st.dev. (n) | | | 00078 | R(calc.) | | 0.0 | 00221 | st.dev.(Horwit | tz) | 0.0
0.0 | 00221
00079 |)4 | | | | | | | | | | | | | | | | | | Comr | st.dev.(Horwit
R(Horwitz) | tz) | 0.0
0.0 | 00221 |)4 | | | | | | | | | | | | | | | | | | Comp | st.dev.(Horwit
R(Horwitz)
pare | tz) | 0.0
0.0
0.0 | 00221
00079 | 94 | | | | | | | | | | | | | | | | | | Comp | st.dev.(Horwit
R(Horwitz) | tz) | 0.0
0.0
0.0 | 00221
00079
00222 | 94 | | | | | | | | | | | | | | | | | | Comp | st.dev.(Horwit
R(Horwitz)
pare | tz) | 0.0
0.0
0.0 | 00221
00079
00222 | 94 | | | | | | | | | | | | | | | | | | | st.dev.(Horwit
R(Horwitz)
pare | tz) | 0.0
0.0
0.0 | 00221
00079
00222 | 94 | | | | | | | | | | | | | | | | | | 0.013 T | st.dev.(Horwit
R(Horwitz)
pare | tz) | 0.0
0.0
0.0 | 00221
00079
00222 | 94 | | | | | | | | | | | | Δ | Δ | Δ | Δ | | | 0.013 T
0.012 - | st.dev.(Horwit
R(Horwitz)
pare | tz) | 0.0
0.0
0.0 | 00221
00079
00222
02339 | 94 | Δ | Δ | <u> </u> | Δ. | Δ. | | | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.013 T
0.012 -
0.011 - | st.dev.(Horwit
R(Horwitz)
pare | | 0.0
0.0
0.0 | 00221
00079
00222 |)4 | Δ | Δ | <u>.</u> | Δ. | Δ | | | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.013 T
0.012 T
0.011 T
0.01 T
0.009 T | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | | 0.0
0.0
0.0 | 00221
00079
00222
02339 |)4 | Δ | Δ | Δ | <u> </u> | Δ | Δ | | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.013 T
0.012 -
0.011 -
0.01 -
0.009 -
0.008 - | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | | 0.0
0.0
0.0 | 00221
00079
00222
02339 |)4 | Δ | Δ | <u> </u> | Δ. | Δ | Δ | | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.013 T
0.012 T
0.011 T
0.01 T
0.009 T
0.008 T | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | | 0.0
0.0
0.0 | 00221
00079
00222
02339 |)4 | Δ | Δ | <u> </u> | <u>.</u> | <u> </u> | Δ. | | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 0.013 T 0.012 + 0.011 + 0.01 + 0.009 + 0.008 + 0.006 + 0.005 + | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
00222
02339 |)4
?
) | Δ | Δ | <u> </u> | Δ. | Δ | | <u> </u> | Δ | Δ | Δ | Δ | Δ | Δ | | Δ | | | 0.013 T 0.012 - 0.011 - 0.01 - 0.009 - 0.008 - 0.007 - 0.006 - 0.005 - | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ. | 0.0
0.0
0.0 | 00221
00079
00222
02339 |)4 | ₫ | 6412 | 316 | 2829 | 323 | 4 | 43.00 | 734 | 438 | A 33 | Δ 208 | Δ | Δ | 445 | 4040 | 1029 | | 0.013 | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
00222
02339 |)4
?
) | | | ± 20 € | 62562 | \$25 | 1041 | 1320 | 734 | 4891 | | | | | | | 1079 | | 0.013 T 0.012 - 0.011 - 0.01 - 0.009 - 0.008 - 0.007 - 0.006 - 0.005 -
0.005 - | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
000222
002339 | 2.91 | | | 316 | 6962 | 232 | 1041 | 4 00261 | 734 | Φ | | | | | | | 6201 | | 0.013 0.012 0.011 0.011 0.001 0.005 0.006 0.005 0.004 0.004 0.006 0.004 0.006 0.004 0.006 | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
00222
02339 | 2.91 | | | 316 | 2829 | 323 | 4 | △ | Ф | 454) | | | | | | | 0501 | | 0.013 | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
000222
002339 | 2.91 | | | 318 | 6282 | 323 | 4 | △ 0261 | A | A 96 94 ; | | | | | | | 9 1029 | | 0.013 0.012 0.011 0.011 0.001 0.005 0.006 0.005 0.004 0.004 0.006 0.004 0.006 0.004 0.006 | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
000222
002339 | 2.91 | | | 3)(2 | 2829 | △ | 4 | 4 | Δ | 4691 | | | | | | | 1029 | | 0.013 0.012 0.011 0.011 0.001 0.005 0.006 0.005 0.004 0.004 0.006 0.004 0.006 0.004 0.006 | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
000222
002339 | 2.91 | | | 3)(2 | 4 2929 | ■ 228 | 1041 | 4 | 402 | Δ (59) | | | | | | | 1029 | | 0.013 0.012 0.011 0.001 0.009 0.008 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
000222
002339 | 2.91 | | | 316 | 4 2829 | 323 | 1041 | 4 0261 | Δ 252 | 459) | | | | | | | 1029 | | 0.013
0.012
0.011
0.011
0.011
0.009
0.008
0.007
0.006
0.005
0.004
500 - | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
000222
002339 | 2.91 | | | 315 | 4 2020 | 323 | 1041 | 4 0761 | Δ. | 4694 | | | | | | | 1029 | | 0.013 0.012 0.011 0.001 0.009 0.008 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 | st.dev.(Horwit R(Horwitz) pare
R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
000222
002339 | 2.91 | | | 315 | 4 2828 | 333 | 1041 | 4300000 | Δ | A 1691 | | | | | | | 1029 | | 0.013
0.012
0.011
0.011
0.011
0.009
0.008
0.007
0.006
0.005
0.004
500 - | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
000222
002339 | 2.91 | | | 315 | 6256 | 323 | 4 | 0261 | 734 | 4691 | | | | | | | 1029 | | 0.013
0.012
0.011
0.011
0.011
0.009
0.008
0.007
0.006
0.005
0.004
500 - | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
000222
002339 | 2.91 | | | 316 | △ 2809 | 322 | 4 | 0261 | 462 | 4691 | | | | | | | 1029 | | 0.013 0.012 0.011 0.011 0.001 0.008 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
000222
002339 | 2.91 | | | 916 | 6962 | 323 | 4 1941 | 0281 | 734 | A | | | | | | | 107.9 | | 0.013
0.012
0.011
0.011
0.011
0.009
0.008
0.007
0.006
0.005
0.004
500 - | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
000222
002339 | 2.91 | | | 316 | 8000 | 323 | 4 | OCE) | 7784 | Δ | | | | | | | 1029 | | 0.013
0.012
0.011
0.011
0.011
0.009
0.008
0.007
0.006
0.007
0.006
0.007
0.006
0.007
0.006
0.007
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 | st.dev.(Horwit R(Horwitz) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
000222
002339 | 2.91 | | | 936 | 282.9 | 323 | 4 | 1330 | 42.2 | 4694 | | | | | | | 0201 | | 0.013 0.012 0.011 0.011 0.001 0.008 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 | st.dev.(Horwit R(Horwitz)) pare R(D7504:21) | Δ | 0.0
0.0
0.0 | 00221
00079
000222
002339 | 2.91 | 1001 | | 316 | 2829 | S200 | 4 | 4 | 734 | 454) | | | | | | | 0501 | mixed-Xylenes: iis21C13 page 27 of 39 # Determination of Ethylbenzene on sample #21182; results in %M/M | lab | | | | | | | | | | | | | | | | |---|----------------------------------|-----------------------|----------|--|-------------|----------------|--------------------|-----|-----------|-------|---|------|---|---|-----| | | method
D7504 | value | mark | z(targ)
-0.10 | remarks | | | | | | | | | | | | 52
150 | D7504 | 9.7489
 | | -0.10
 | | | | | | | | | | | | | 171 | D7504 | 9.7964 | | 0.32 | | | | | | | | | | | | | 315 | D7504 | 9.86 | | 0.87 | | | | | | | | | | | | | 317 | D7504 | 9.77 | | 0.08 |
 | | | | | | | | | | | 323 | D6563 | 9.49 | R(0.01) | -2.36 | | | | | | | | | | | | | 396 | D7504
D6563 | 9.85 | | 0.78
-1.14 | | | | | | | | | | | | | 445
446 | D0000 | 9.63 | | -1.14 | | | | | | | | | | | | | 551 | | | | | | | | | | | | | | | | | 555 | | | | | | | | | | | | | | | | | 558 | | | | | | | | | | | | | | | | | 734 | D7504 | 9.746605 | | -0.12 | | | | | | | | | | | | | 823 | D7504 | 9.7619 | | 0.01 | | | | | | | | | | | | | 862
913 | D7504
D7504 | 9.808
9.71130 | | 0.42
-0.43 | | | | | | | | | | | | | 1011 | D5917 | 9.71184 | | -0.43 | | | | | | | | | | | | | 1040 | D7504 | 9.753 | | -0.06 | | | | | | | | | | | | | 1041 | D6563 | 9.74 | | -0.18 | | | | | | | | | | | | | 1081 | D6563 | 9.7436247 | | -0.15 | | | | | | | | | | | | | 1250 | D7504 | 9.7323 | | -0.25 | | | | | | | | | | | | | 1320
1434 | D7504 | 9.69
9.79370 | | -0.62
0.29 | | | | | | | | | | | | | 1530 | D7504 | 9.79370 | R(0.01) | -2.69 | | | | | | | | | | | | | 1812 | D1004 | 9.76083 | 11(0.01) | 0.00 | | | | | | | | | | | | | 6201 | D7504 | 9.74 | | -0.18 | | | | | | | | | | | | | 6262 | D7504 | 9.7195 | | -0.36 | | | | | | | | | | | | | 6412 | D5917 | 9.81385 | | 0.47 | | | | | | | | | | | | | 7009 | D2306 | 9.839 | | 0.69 | | | | | | | | | | | | | | normality | ОК | | | | | | | | | | | | | | | | n | 22 | | | | | | | | | | | | | | | | outliers | 2 | | | | | | | | | | | | | | | | mean (n) | 9.76033 | | | | | | | | | | | | | | | | st.dev. (n) | 0.054264 | | | | | | | | | | | | | | | | R(calc.) | 0.15194 | | | | | | | | | | | | | | | | SLUEV (1)7,504 7 11 | 0 114307 | | | | | | | | | | | | | | | | st.dev.(D7504:21)
R(D7504:21) | 0.114307
0.32006 | 10.2 T | 10 | | | | | | | | | | | | | | | | | | R(D7504:21) | 0.32006 | Δ Δ | Δ Δ | Δ | Δ | Δ Δ | | Δ | Δ | Δ | Δ | Δ | Δ | | | 10 | | 0.32006 | Δ Δ | Δ Δ | ΔΔ | Δ | Δ Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 9.8 9.6 - * | R(D7504:21) | 0.32006 | Δ Δ | Δ Δ | Δ Δ | Δ | Δ Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 10 | R(D7504:21) | 0.32006 | ΔΔ | Δ Δ | Δ Δ | Δ | Δ Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 9.8 9.6 - * | R(D7504:21) | 0.32006 | Δ Δ | Δ Δ | Δ Δ | Δ | Δ Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | 9.8 | R(D7504:21) | 0.32006 | Δ Δ | Δ Δ | ΔΔ | Δ | Δ Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | 9.8
9.6
9.4 | R(D7504:21) | 0.32006 | | ∆ | 734 | 4 | 4 4 4 2082 | 317 | 1434 | Δ Εξ. | ▲ | 6412 | Δ | | 316 | | 9.8 - 9.6 - 9.4 - 9.2 - 9.2 - 9.2 - 9.2 - 9.2 - 9.3 - 9.2 - 9.2 - 9.3 - 9.2 - 9.3 - 9 | R(D7504:21) | 0.32006 | | △ △ 1001 | 734 | 1040 | 1812 | 317 | 4634 | | | | | | _ | | 9.8 | R(D7504:21) | 0.32006 | 1280 | 4 A 1000 | 734 | Q9/01 | 4 4 528 | 317 | 1434 | | | | | | _ | | 9.8 - 9.6 - 9.4 - 9.2 - 9.2 - 9.2 - 9.2 - 9.2 - 9.3 - 9.2 - 9.2 - 9.3 - 9.2 - 9.3 - 9 | R(D7504:21) | 0.32006 | 1280 | 4 A A 1081 | 7 24 A | 0401 | 1872 P | 317 | 25.51 | | | | | | _ | | 9.8 - 9.6 - 9.4 - 9.2 - 9.6 - 9.7 - 7 - | R(D7504:21) | 0.32006 | 1280 | 4 4 1081 1081 1081 1081 1081 1081 1081 1 | 25 25 | 1040 | 1812 | 377 | 438 | | | | | | _ | | 9.8 - 9.6 - 9.4 - 9.2 - 9.2 - 9.5 - 9 | R(D7504:21) | 0.32006 | 1280 | 4 4 4 (108) | 734 | 1040 | 1812 | 317 | 4651 | | | | | | _ | | 9.8 - 9.6 - 9.4 - * 9.2 - 9.6 - 0.5 -
0.5 - | R(D7504:21) | 0.32006 | 1280 | Δ Δ | 734 | 1040 | 1812 | 317 | AC64) | | | | | | _ | | 9.8 - 9.6 - 9.4 - 9.2 - 9.6 - 9.7 - 7 - | R(D7504:21) | 0.32006 | 1280 | Q 4 | 734 | 1040 | 1812
823
823 | 317 | A 15.51 | | | | | | _ | | 9.8 - 9.6 - 9.4 - * 9.2 - 9.6 - 0.5 - | R(D7504:21) | 0.32006 | 1280 | A A (1981) | 7.34 | 1040 | 1812
823
823 | 377 | A 25 to 1 | | | | | | _ | | 9.8 9.6 - 9.4 - × 9.2 - 9 - 0051 8 - 7 - 6 - 5 - 4 - | R(D7504:21) | 0.32006 | 1280 | A A 1901 | 7.24 A 2.22 | Ovo! | 1812 | 317 | A 25° t | | | | | | _ | | 9.8 9.6 - 9.4 - × 9.2 - 9 - 8 - 7 - 6 - 5 - | R(D7504:21) | 0.32006 | 1280 | A A 1901 | 7.54 A 252 | Qro! | 1812 | 317 | A 25 t ; | | | | | | _ | | 9.8 9.6 9.4 - × - 9.2 - 9.5 6.5 - 4.5 - 4.5 - 3. | R(D7504:21) | 0.32006 | 1280 | 4 A | 22 22 | 0001 | 1872 | 317 | 25.51 | | | | | | _ | | 9.8 9.6 - 9.4 - × 9.2 - 9 - 0051 8 - 7 - 6 - 5 - 4 - | R(D7504:21) | 0.32006 | 1280 | A A 1002 | 7.34 | DP01 | 4 238 | 317 | A 55.5. | | | | | | _ | | 9.8 9.6 9.4 - × - 9.2 - 9.5 6.5 - 4.5 - 4.5 - 3. | R(D7504:21) | 0.32006 | 1280 | A A 1000 | 25 25 | 1 0401 | 4 238 | 317 | 48.51 | | | | | | _ | | 9.8 9.6 9.4 9.7 - 6 - 5 - 4 - 3 - 2 - 1 - | R(D7504:21) | 0.32006 | 1280 | 4 A 10801 | 252 | 4 | 1872 | 317 | A 1500 | | | | | | _ | | 9.8 9.6 9.4 - * 9.2 - 9 - 0051 8 | R(D7504:21) | 0.32006 Kernel Densi | 882 ty | A A 19801 | 734 | △ Otro) | 4 7 1915 | 317 | A5.6.1 | | | | | | _ | | 9.8 9.6 9.4 9.7 - 6 - 5 - 4 - 3 - 2 - 1 - | R(D7504:21) | 0.32006 | 1280 | A A 19801 | 252 | Q#O) | 1872 | 317 | 4691 | | | | | | _ | page 28 of 39 mixed-Xylenes: iis21C13 # Determination of p-Diethylbenzene on sample #21182; results in %M/M | lab | method | value | mark | z(targ) | remarks | |--------------|-----------|----------|------|---------|---------| | 52 | | | | | | | 150 | | | | | | | 171 | | | | | | | 315 | D7504 | <0.002 | | | | | 317 | | | | | | | 323 | | | | | | | 396 | | | | | | | 445 | | | | | | | 446
551 | | | | | | | 551
555 | | | | | | | 558 | | | | | | | 734 | D7504 | 0.0000 | | | | | 823 | D7504 | <0.0002 | | | | | 862 | D7504 | < 0.0002 | | | | | 913 | | | | | | | 1011 | | | | | | | 1040 | | | | | | | 1041 | D6563 | <0,01 | | | | | 1081 | D6563 | 0 | | | | | 1250 | | | | | | | 1320 | | | | | | | 1434 | | 0 | | | | | 1530 | | | | | | | 1812 | | | | | | | 6201 | D7504 | | | | | | 6262
6412 | D7504 | <0.0005 | | | | | 7009 | D2306 | 0.000 | | | | | 1009 | D2300 | 0.000 | | | | | | normality | | | | | | | n | 9 | | | | | | mean (n) | <0.01 | | | | | | ` ' | | | | | 19.2 19.4 19.6 19.8 # Determination of o-Xylene on sample #21182; results in %M/M | lah | method | | value | | 100 | ark | | (tara) | 20 | marke | | | | | | | | | | | | |-----------|---------------
----------|--------|---------|------|------|------|--------|-----|-------|------|-----|-----|----|------|------|------|------|------|-----|-----| | lab | | | value | | m | ark | Z | (targ) | rei | marks | 5 | | | | | | | | | | | | 52
150 | D7504 | | 19.43° | 19 | | | | 0.06 | | | | | | | | | | | | | | | 150 | D7504 | | 40.00 | 10 | | | | | | | | | | | | | | | | | | | 171 | D7504 | | 19.30 | 10 | | | | -0.32 | | | | | | | | | | | | | | | 315 | D7504 | | 19.52 | | | | | 0.31 | | | | | | | | | | | | | | | 317 | D7504 | | 19.42 | | | | | 0.02 | | | | | | | | | | | | | | | 323 | D6563 | | 19.20 | | | | | -0.61 | | | | | | | | | | | | | | | 396 | D7504 | | 19.65 | | | | | 0.68 | | | | | | | | | | | | | | | 445 | D6563 | | 19.43 | | | | | 0.05 | | | | | | | | | | | | | | | 446 | 551 | 555 | 558 | 734 | D7504 | | 19.42 | 7135 | | | | 0.04 | | | | | | | | | | | | | | | 823 | D7504 | | 19.424 | | | | | 0.03 | | | | | | | | | | | | | | | 862 | D7504 | | 19.418 | | | | | 0.03 | | | | | | | | | | | | | | | 913 | D7504 | | 19.369 | | | | | -0.12 | | | | | | | | | | | | | | | 4044 | 1011 | D5917 | | 19.279 | | | | | -0.38 | | | | | | | | | | | | | | | 1040 | D7504 | | 19.397 | | | | | -0.04 | | | | | | | | | | | | | | | 1041 | D6563 | | 19.42 | | | | | 0.04 | | | | | | | | | | | | | | | 1081 | D6563 | | 19.357 | | | | | -0.16 | | | | | | | | | | | | | | | 1250 | D7504 | | 19.44 | 10 | | | | 0.08 | | | | | | | | | | | | | | | 1320 | D7504 | | 19.51 | | | | | 0.28 | | | | | | | | | | | | | | | 1434 | | | 19.49 | 506 | | | | 0.24 | | | | | | | | | | | | | | | 1530 | D7504 | | 19.327 | 7 | | | | -0.24 | | | | | | | | | | | | | | | 1812 | | | 19.306 | | | | | -0.30 | | | | | | | | | | | | | | | 6201 | D7504 | | 19.38 | | | | | -0.09 | | | | | | | | | | | | | | | 6262 | D7504 | | 19.399 | 95 | | | | -0.04 | | | | | | | | | | | | | | | 6412 | D5917 | | 19.48 | | | | | 0.21 | | | | | | | | | | | | | | | 7009 | D2306 | | 19.502 | | | | | 0.26 | | | | | | | | | | | | | | | 1003 | D2300 | | 13.302 | _ | | | | 0.20 | | | | | | | | | | | | | | | | normality | | suspe | ct | 24 | Cl | n | outliers | | 0 | mean (n) | | 19.412 | st.dev. (n) | | 0.093 | R(calc.) | | 0.2609 | st.dev.(D7504 | :21) | 0.3508 | R(D7504:21) | | 0.982 |) | 21 T | 20.5 + | 20 + | Δ | | 19.5 | Δ Δ Δ | Δ | Δ | | Δ | | | | | | | | | | | Δ | Δ | Δ | Δ | Δ | | | 19 - | _ | 18.5 - | 18 - | 17.5 - | 17 8 | 171 | 1530 | 1081 | 913 | 6201 | 1040 | 6262 | 862 | 317 | 823 | 1041 | 734 | 445 | 52 | 1250 | 6412 | 1434 | 6002 | 1320 | 315 | 396 | | 6) | 1 1 8 | 5 | 6 | • | 29 | 5 | 62 | w | | w | 5 | .~ | 4 | | 4 | 26 | 4 | 2 | 5 | | ** | 6 T | | | | | | 1 | Kerne | el Dens | sity | | | | | | | | | | | | | | | | | | 5 - | , | \wedge | L | _\ | 4 - | / | 1 | // | 1 | // | \ | 3 - | // | \ | // | 1 | 2 - | // | 1 | ı - | / | / | | | | 1 | | | | | | | | | | | | | | | | page 30 of 39 mixed-Xylenes: iis21C13 # Determination of m-Xylene on sample #21182; results in %M/M | lab | method | value | mark | z(targ) | remark | (S | | | | | | | | | | |--------------|-------------------------------|-----------------------|---------------|---------------|---|------------|------|------|------|-----|-----|------|------|-----|------| | 52 | D7504 | 40.5456 | | -0.16 | | | | | | | | | | | | | 150 | D7504 | 40.5050 | | | | | | | | | | | | | | | 171
315 | D7504
D7504 | 40.5959
40.45 | | 0.09
-0.62 | | | | | | | | | | | | | 317 | D7504 | 40.55 | | -0.02 | | | | | | | | | | | | | 323 | D6563 | 40.77 | С | 0.94 | first rep | orted 40.9 | 99 | | | | | | | | | | 396 | D7504 | 39.498 | C,R(0.01) | -5.27 | | orted 39.9 | | | | | | | | | | | 445 | D6563 | 40.62 | , , | 0.21 | · | | | | | | | | | | | | 446 | | | | | | | | | | | | | | | | | 551
555 | | | | | | | | | | | | | | | | | 558 | | | | | | | | | | | | | | | | | 734 | D7504 | 40.52733 | | -0.25 | | | | | | | | | | | | | 823 | D7504 | 40.5362 | | -0.20 | | | | | | | | | | | | | 862 | D7504 | 40.546 | | -0.16 | | | | | | | | | | | | | 913 | D7504 | 40.6675 | | 0.44 | | | | | | | | | | | | | 1011
1040 | D5917
D7504 | 40.6797
40.549 | | 0.50
-0.14 | | | | | | | | | | | | | 1040 | D6563 | 40.549 | | -0.14 | | | | | | | | | | | | | 1081 | D6563 | 40.6004617 | | 0.11 | | | | | | | | | | | | | 1250 | D7504 | 40.5886 | | 0.05 | | | | | | | | | | | | | 1320 | D7504 | 40.61 | | 0.16 | | | | | | | | | | | | | 1434 | D7504 | 40.47898 | D(0.04) | -0.48 | | | | | | | | | | | | | 1530
1812 | D7504 | 40.969
40.75132 | R(0.01) | 1.91
0.85 | | | | | | | | | | | | | 6201 | D7504 | 40.75132
40.49 | | -0.43 | | | | | | | | | | | | | 6262 | D7504 | 40.6075 | | 0.14 | | | | | | | | | | | | | 6412 | D5917 | 40.45576 | | -0.60 | | | | | | | | | | | | | 7009 | D2306 | 40.534 | | -0.21 | | | | | | | | | | | | | | | OK | | | | | | | | | | | | | | | | normality
n | OK
22 | | | | | | | | | | | | | | | | outliers | 2 | | | | | | | | | | | | | | | | mean (n) | -
40.5779 | | | | | | | | | | | | | | | | st.dev. (n) | 0.08423 | | | | | | | | | | | | | | | | R(calc.) | 0.2359 | | | | | | | | | | | | | | | | st.dev.(D7504:
R(D7504:21) | 21) 0.20490
0.5737 | | | | | | | | | | | | | | | | 11(27001.21) | 0.0707 | | | | | | | | | | | | | | | 41.3 T | | | | | | | | | | | | | | | | | 41.1 | | | | | | | | | | | | | | | | | 40.9 | | | | | | | | | | | | | | | * | | 40.7 - | | | | | | | | | | ^ | Δ | Δ | Δ | Δ | | | 40.5 | Δ Δ Δ | Δ Δ Δ | Δ Δ Δ | Δ | 7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | | | | | | | _ | | 40.3 - | | | | | | | | | | | | | | | | | 40.1 - | | | | | | | | | | | | | | | | | 39.9 - | | | | | | | | | | | | | | | _ | | 39.7 - | | | | | | | | | | | | | | | | | 39.5 | 315 | 734 | 862 52
862 | 1040 | 1041 | 1250 | 1081 | 6262 | 1320 | 445 | 913 | 1011 | 1812 | 323 | 1530 | | | | 9 2 | | - | | | | | | | | - | - | | - | | 6 T | | | | | | | | | | | | | | | | | | | Kernel Densi | ity | | | | | | | | | | | | | | 5 - | | ٨ | | | | | | | | | | | | | | | | | Λ | | | | | | | | | | | | | | | 4 - | | /\ | | | | | | | | | | | | | | | 4 | 3 - | | / // | 2 - | | | | | | | | | | | | | | | | | | | / // | | | | | | | | | | | | | | | 1 - | | / W | | | | | | | | | | | | | | | | ۸ | / // ^ | | | | | | | | | | | | | | | | /\ | // // | | | | | | | | | | | | | | | 0 1 | 39.5 40 | 40.5 41 | 41.5 | | | | | | | | | | | | | mixed-Xylenes: iis21C13 page 31 of 39 # Determination of p-Xylene on sample #21182; results in %M/M | lab | method
D7504 | value | mark | z(targ) | remark | S | | | | | | | | | | |-------------------|-----------------------------|---------------------|---------|----------------|--------|-----|--|-----|------|-----|-----|------|------|-----|-----| | 52
150 | D7504 | 30.1122 | | 0.00 | | | | | | | | | | | | | 171 | D7504 | 30.1447 | | 0.19 | | | | | | | | | | | | | 315 | D7504 | 30.02 | | -0.54 | | | | | | | | | | | | | 317 | D7504 | 30.13 | | 0.10 | | | | | | | | | | | | | 323 | D6563 | 30.19 | D(0.04) | 0.45 | | | | | | | | | | | | | 396
445 | D7504
D6563 | 30.36
30.16 | R(0.01) | 1.44
0.28 | | | | | | | | | | | | | 446 | D0303 | 30.10 | | 0.20 | | | | | | | | | | | | | 551 | | | | | | | | | | | | | | | | | 555 | | | | | | | | | | | | | | | | | 558 | | | | | | | | | | | | | | | | | 734 | D7504 | 30.135625 | | 0.14 | | | | | | | | | | | | | 823
862 | D7504
D7504 | 30.1321
30.102 | | 0.11
-0.06 | | | | | | | | | | | | | 913 | D7504 | 30.11845 | | 0.04 | | | | | | | | | | | | | 1011 | D5917 | 30.1875 | | 0.44 | | | | | | | | | | | | | 1040 | D7504 | 30.123 | | 0.06 | | | | | | | | | | | | | 1041 | D6563 | 30.12 | | 0.04 | | | | | | | | | | | | | 1081 | D6563 | 30.1639951 | | 0.30 | | | | | | | | | | | | | 1250
1320 | D7504
D7504 | 30.1348
30.07 | | 0.13
-0.25 | | | | | | | | | | | | | 1434 | D7304 | 30.07740 | | -0.20 | | | | | | | | | | | | | 1530 | D7504 | 30.139 | | 0.15 | | | | | | | | | | | | | 1812 | | 30.03830 | | -0.43 | | | | | | | | | | | | | 6201 | D7504 | 30.10 | | -0.07 | | | | | | | | | | | | | 6262
6412 | D7504
D5917 | 30.1022
30.08961 | | -0.06
-0.13 | | | | | | | | | | | | | 7009 | D2306 | 29.993 | | -0.13
-0.69 | | | | | | | | | | | | | 1000 | 22000 | 20.000 | | 0.00 | | | | | | | | | | | | | | normality | OK | | | | | | | | | | | | | |
| | n | 23 | | | | | | | | | | | | | | | | outliers
mean (n) | 1
30.1123 | | | | | | | | | | | | | | | | st.dev. (n) | 0.04884 | | | | | | | | | | | | | | | | R(calc.) | 0.1368 | | | | | | | | | | | | | | | | st.dev.(D7504:21) | 0.17239 | | | | | | | | | | | | | | | | R(D7504:21) | 0.4827 | | | | | | | | | | | | | | | 30.7 _T | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | - | | 30.5 - | | | | | | | | | | | | | | | | | 30.3 - | | | | | | | | | | | | | | | * | | | | | | | | | A A | ^ | Δ | Δ | Δ | Δ | Δ | Δ | | | 30.1 | Δ Δ Δ | . 🛕 🛕 | Δ | | | | <u>. </u> | | _ | | | | | | | | 29.9 - | | | | | | | | | | | | | | | | | 29.7 | | | | | | | | | | | | | | | _ | | _ | | | | | | | | | | | | | | | | | 29.5 | 315
1812
1320
1434 | 6412 | 862 | 913 | 1041 | 317 | 823 | 734 | 1530 | 171 | 445 | 1081 | 1011 | 323 | 396 | | | | | | | | | | | - | | | | | | | | 10 T | | | | | | | | | | | | | | | | | 9 - | \wedge | Kernel Densi | ty | | | | | | | | | | | | | | 8 - | <i>[</i>] | | | | | | | | | | | | | | | | | // \\ | | | | | | | | | | | | | | | | 7 - | // \ | | | | | | | | | | | | | | | | 6 - | // | | | | | | | | | | | | | | | | 5 - | // | | | | | | | | | | | | | | | | | // | | | | | | | | | | | | | | | | 4 - | // \ | | | | | | | | | | | | | | | | 3 - | | | | | | | | | | | | | | | | | 2 | // | | | | | | | | | | | | | | | | | / | | | | | | | | | | | | | | | | 1 1 | // | \wedge | | | | | | | | | | | | | | | 0 + | 9 30 30.1 30.2 | 2 30.3 30.4 | 30.5 | | | | | | | | | | | | | | 29.9 | 9 30 30.1 30.2 | 2 30.3 30.4 | 30.3 | | | | | | | | | | | | | | 1 | | | 1 | | | | | | | | | | | | | page 32 of 39 mixed-Xylenes: iis21C13 # Determination of sum of m- and p-Xylenes on sample #21182; results in %M/M | lab | method | value | mark | z(targ) | rema | rks | | | | | | | | | | |-----------------|-------------------|--------------------|---------|---------------|----------|---------|-------|-----|------|-----|-----|------|------|-----|------| | 52 | D7504 | 70.6578 | will | -0.06 | · Oilid | | | | | | | | | | | | 150 | | | | | | | | | | | | | | | | | 171 | D7504 | 70.7406 | | 0.10 | | | | | | | | | | | | | 315 | D7504 | 70.46 | | -0.42 | | | | | | | | | | | | | 317 | D7504 | 70.68 | 0 | -0.02 | c | | 00.00 | | | | | | | | | | 323
396 | D6563 | 70.97
 | С | 0.52 | TITST TE | eported | 90.38 | | | | | | | | | | 445 | D6563 | 70.77 | | 0.15 | | | | | | | | | | | | | 446 | 50000 | | | | | | | | | | | | | | | | 551 | | | | | | | | | | | | | | | | | 555 | | | | | | | | | | | | | | | | | 558 | | | | | | | | | | | | | | | | | 734 | D7504 | 70.662955 | | -0.05 | | | | | | | | | | | | | 823 | D7504 | 70.6683 | | -0.04 | | | | | | | | | | | | | 862
913 | D7504
D7504 | 70.647
70.78595 | | -0.08
0.18 | | | | | | | | | | | | | 1011 | D5917 | 70.76393 | | 0.18 | | | | | | | | | | | | | 1040 | 50011 | 70.672 | | -0.03 | | | | | | | | | | | | | 1041 | D6563 | 70.68 | | -0.02 | | | | | | | | | | | | | 1081 | D6563 | 70.764456 | | 0.14 | | | | | | | | | | | | | 1250 | D7504 | 70.7234 | | 0.06 | | | | | | | | | | | | | 1320 | D7504 | 70.68 | | -0.02 | | | | | | | | | | | | | 1434 | D7504 | 70.55638 | D(0.05) | -0.24 | | | | | | | | | | | | | 1530
1812 | D7504 | 71.109
70.78962 | R(0.05) | 0.78
0.19 | | | | | | | | | | | | | 6201 | D7504 | 70.76902
70.59 | | -0.18 | | | | | | | | | | | | | 6262 | D7504 | 70.7097 | | 0.04 | | | | | | | | | | | | | 6412 | D5917 | 70.54537 | | -0.27 | | | | | | | | | | | | | 7009 | D2306 | 70.527 | | -0.30 | normality | OK | | | | | | | | | | | | | | | | n
outliers | 22
1 | | | | | | | | | | | | | | | | mean (n) | 70.6885 | | | | | | | | | | | | | | | | st.dev. (n) | 0.11502 | | | | | | | | | | | | | | | | R(calc.) | 0.3221 | | | | | | | | | | | | | | | | st.dev.(D7504:21) | 0.53960 | | | | | | | | | | | | | | | | R(D7504:21) | 1.5109 | ⁷³ T | | | | | | | | | | | | | | | | | 72 + _ | | | | | | | | | | | | | | | - | | 71 + | Δ Δ Δ | Δ Δ Δ | Δ Δ | Δ Δ | Δ | Δ | Δ Δ | Δ | | | | Δ | | Δ | * | | 70 - | | | | | | | | | | | | | | | | | 69 | | | | | | | | | | | | | | | | | 68 - | | | | | | | | | | | | | | | | | 67 - | | | | | | | | | | | | | | | | | 66 - | | | | | | | | | | | | | | | | | 65 - | | | | | | | | | | | | | | | | | 64 45 6 | 7009 6412 1434 | 862 | 734 | 1040 | 1041 | 1320 | 6262 | 171 | 1081 | 445 | 913 | 1812 | 1011 | 323 | 1530 | | | | | | | | | | | | | | | | | , | | 4.5 ⊤ | | | | | | | | | | | | | | | | | 4 - | | Kernel Densi | ty | | | | | | | | | | | | | | 4 | | ٨ | | | | | | | | | | | | | | | 3.5 - | | W | 3 - | | 1 | | | | | | | | | | | | | | | 2.5 | 2 - | | | | | | | | | | | | | | | | | 1.5 - | | / | 1 - | | / // | | | | | | | | | | | | | | | 0.5 | | / \ | | | | | | | | | | | | | | | | | / [// | | | | | | | | | | | | | | | 0 + |) 60 7 | 0 74 | 72 | | | | | | | | | | | | | | i 68 | 8 69 7 | 0 71 | 72 | | | | | | | | | | | | | mixed-Xylenes: iis21C13 page 33 of 39 ### Determination of Total mixed-Xylenes on sample #21182; results in %M/M | lab | method | value | mark | z(targ) | iis calc. | mark | remarks | |-------------|-------------------|--------------------|------|---------|--------------------|---------|---------| | 52 | D7504 | 90.0897 | | | 99.8386 | | | | 150 | | | | | | | | | 171 | D7504 | 90.0416 | | | 99.8380 | | | | 315 | D7504 | 99.84 | | | 99.8500 | | | | 317 | D7504 | 90.10 | | | 99.8700 | | | | 323 | D6563 | 90.38 | | | 99.6500 | R(0.01) | | | 396 | D | | | | 99.3580 | R(0.01) | | | 445 | D6563 | 99.84 | | | 99.8400 | | | | 446 | | | | | | | | | 551 | | | | | | | | | 555 | | | | | | | | | 558 | D7504 | | | | 00.0007 | | | | 734 | D7504 | 99.836695 | | | 99.8367 | | | | 823 | D7504 | 99.8543 | | | 99.8543 | | | | 862 | D7504 | 90.065 | | | 99.8740 | | | | 913
1011 | D7504
D5917 | 99.8671
90.1470 | | | 99.8671
99.8654 | | | | 1040 | D3917 | 90.069 | | | 99.8034 | | | | 1040 | D6563 | 90.11 | | | 99.8220 | | | | 1041 | D6563 | 90.122217 | | | 99.8658 | | | | 1250 | D7504 | 90.1644 | | | 99.8967 | | | | 1320 | D7504 | 90.19 | | | 99.8800 | | | | 1434 | D7504 | 99.84514 | | | 99.8451 | | | | 1530 | D7504 | 90.434 | | | 99.8880 | | | | 1812 | 2.00. | 90.09608 | | | 99.8569 | | | | 6201 | D7504 | 89.97 | | | 99.7100 | R(0.01) | | | 6262 | D7504 | 90.1092 | | | 99.8287 | () | | | 6412 | D5917 | 90.03067 | | | 99.8445 | | | | 7009 | D2306 | 90.029 | | | 99.8680 | | | | | | | | | | | | | | normality | | | | OK | | | | | n | | | | 21 | | | | | outliers | | | | 3 | | | | | mean (n) | | | | 99.85594 | | | | | st.dev. (n) | | | | 0.019744 | | | | | R(calc.) | | | | 0.05528 | | | | | st.dev.(D7504:21) | | | | n.e. | | | | | R(D7504:21) | | | | n.e. | | | The column "iis calc" is the sum of m-Xylene, o-Xylene, p-Xylene and ethylbenzene calculated as Total mixed Xylenes as per test method ASTM D7504:21 page 34 of 39 mixed-Xylenes: iis21C13 # Determination of iso-Propyl Benzene (Cumene) on sample #21182; results in %M/M | la | ab | method | | | valı | ue | | mark | | z(targ) | rema | arks | | | | | | | | | | | |--|---------------------------------|--|----------------------|---------------|------------------------------|--------------------------------|--------|--------|----------|----------------|---|------|-----|-------|-----|------|---|-----|---|-----|------|------| | - ; | 52 | D7504 | | | 0.05 | | | | | 0.77 | | | | | | | | | | | | | | 1 | 50 | 71 | D7504 | | | 0.05 | | | | | 1.21 | | | | | | | | | | | | | | | 15
17 | D7504
D7504 | | |
0.05 | | | | | 0.51
-1.45 | | | | | | | | | | | | | | 3: | 23 | D6563 | | | 0.02 | | | | | -1.45
-1.41 | | | | | | | | | | | | | | | 96 | Воооо | 45 | D2360 | | | 0.05 | 57 | | | | 1.64 | | | | | | | | | | | | | | | 46 | 51 | 55 | | | | | • | | | | | | | | | | | | | | | | | | | 58
34 | D7504 | | | 0.05 | 553 | | | | 0.90 | | | | | | | | | | | | | | | 23 | D7504 | | | 0.0 | | | | | 0.30 | | | | | | | | | | | | | | | 62 | D7504 | | | 0.05 | | | | | 0.69 | | | | | | | | | | | | | | 9 | 13 | D7504 | | | 0.04 | 46075 | | | | -3.12 | | | | | | | | | | | | | | 10 | | D5917 | | | 0.05 | | | | | 0.95 | | | | | | | | | | | | | | 104 | | D7504 | | | 0.05 | | | | | 1.64 | | | | | | | | | | | | | | 104
108 | | D6563
D6563 | | | 0.05 | 5
543306 | 8 | | | -1.41
0.48 | | | | | | | | | | | | | | 12 | | D0303 | | | | | J | | | 0.40 | | | | | | | | | | | | | | 132 | 20 | D7504 | | | 0.05 | | | | | -1.41 | | | | | | | | | | | | | | 143 | 34 | | | | 0.05 | 5589 | | | | 1.16 | | | | | | | | | | | | | | 153 | | D7504 | | | 0.04 | | | | | -2.37 | | | | | | | | | | | | | | 18 | | D7504 | | | | 7006 | | R(0.01 | 1) | 7.33 | | | | | | | | | | | | | | 620
620 | | D7504
D7504 | | | 0.05 | | | | | 0.34
0.64 | | | | | | | | | | | | | | 64 | | D7504
D5917 | | | | 5539 | | | | 0.64 | | | | | | | | | | | | | | 700 | | D2306 | | | 0.05 | | | | | -0.97 | normality | у | | OK | n | | | 21 | outliers | ` | | 1 | -000 | mean (n | 5323 | st.dev. (ı | n) | | 0.00 | 03132 | n) | 1 :21) | 0.00 | st.dev. (ı
R(calc.) | n)
07504 | 1:21) | 0.00
0.00
0.00 | 03132
0877 | st.dev. (I
R(calc.)
st.dev.(D | n)
07504 | 1:21) | 0.00
0.00
0.00 | 03132
0877
02295 | | | | | | | | | | | | | | | | | | 0.075 | | st.dev. (I
R(calc.)
st.dev.(D | n)
07504 | 1:21) | 0.00
0.00
0.00 | 03132
0877
02295 | | | | | | | | | | | | | | | | | | 0.075 | | st.dev. (I
R(calc.)
st.dev.(D | n)
07504 | 1 :21) | 0.00
0.00
0.00 | 03132
0877
02295 | | | | | | | | | | | | | | | | * | | | | st.dev. (I
R(calc.)
st.dev.(D | n)
07504 | 4:21) | 0.00
0.00
0.00 | 03132
0877
02295 | | | | | | | | | | | | | | | | * | | 0.07 -
0.065 -
0.06 - | | st.dev. (I
R(calc.)
st.dev.(D | n)
07504 | 1:21) | 0.00
0.00
0.00 | 03132
0877
02295 | | | | | | | | | | | | | | A | A | * | | 0.07 - | -
-
-
-
- | st.dev. (I
R(calc.)
st.dev.(D | n)
07504 | 1:21) | 0.00
0.00
0.00 | 03132
0877
02295
0643 | | Δ | <u> </u> | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | * | | 0.07 -
0.065 -
0.06 -
0.055 -
0.05 - | | st.dev. (I
R(calc.)
st.dev.(D | n)
07504 | 1:21) | 0.00
0.00
0.00 | 03132
0877
02295 | Δ | Δ. | | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | * | | 0.07 -
0.065 -
0.06 -
0.055 - | -
-
-
-
-
-
- | st.dev. (I
R(calc.)
st.dev.(D | n)
D7504
4:21) | | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | | Δ | <u> </u> | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | x | | 0.07 - 0.065 - 0.06 - 0.055 - 0.05 - 0.045 - 0.044 - | | st.dev. (I
R(calc.)
st.dev.(D | n)
D7504
4:21) | | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | | Δ | | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | x | | 0.07 - 0.065 - 0.06 - 0.055 - 0.055 - 0.045 - 0.045 - 0.035 - | | st.dev. (I
R(calc.)
st.dev.(D | n)
D7504
4:21) | | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | | Δ. | <u> </u> | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | x | | 0.07 - 0.065 - 0.06 - 0.055 - 0.05 - 0.045 - 0.044 - | - | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | Δ | 883 | 4 | Δ | 4 ▲ | | | Δ 259 | | | | | | | | | | 0.07 - 0.065 - 0.06 - 0.055 - 0.055 - 0.045 - 0.045 - 0.035 - | - A | st.dev. (I
R(calc.)
st.dev.(D | n)
D7504
4:21) | | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | | 823 | 1029 | Δ | 316 | 6262 | 862 | | 734 | 6412 | Δ | 48H | 4 | 445 | 1040 | Z160 | | 0.07 - 0.065 - 0.06 - 0.055 - 0.055 - 0.045 - 0.045 - 0.035
- 0.035 - | 913 | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | Δ | 823 | W 0001 | Δ (80) | 315 | | | | | | | | | | | | | 0.07 - 0.065 - 0.06 - 0.055 - 0.055 - 0.045 - 0.045 - 0.045 - 0.03 - | 913 | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | 4 | \neg | ■ | Δ | △ | | | | | | | | | | | | | 0.07 - 0.065 - 0.06 - 0.055 - 0.055 - 0.045 - 0.045 - 0.045 - 0.03 - | 0 L | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | 4 | \neg | 1029 | A 1800 | A 39.5 | | | | | | | | | | | | | 0.07 - 0.065 - 0.06 - 0.055 - 0.05 - 0.04 - 0.035 - 0.03 - | 0 - | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | 4 | \neg | 1000 | Δ
- 1800 | 3)(2) | | | | | | | | | | | | | 0.07 - 0.065 - 0.06 - 0.055 - 0.045 - 0.045 - 0.045 - 0.03 - | 0 - | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | 4 | \neg | 1000 | A 800 | A 99.8 | | | | | | | | | | | | | 0.07 - 0.065 - 0.066 - 0.055 - 0.05 - 0.045 - 0.045 - 0.035 - 0.03 - 140 | 0 - 0 | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | 4 | \neg | 1029 | A 1800 | Δ Δ | | | | | | | | | | | | | 0.07 - 0.065 - 0.06 - 0.055 - 0.05 - 0.04 - 0.035 - 0.03 - | 0 - 0 | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | 4 | \neg | 10030 | A 1800 | Δ
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.0 | | | | | | | | | | | | | 0.07 - 0.065 - 0.06 - 0.055 - 0.055 - 0.045 - 0.045 - 0.035 - 0.04 - 1.003 - 1.004 - 1 | 0 - | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | 4 | \neg | 10039 | A 800 | Δ
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | | | | | | | | | | | | 0.07 - 0.065 - 0.066 - 0.055 - 0.05 - 0.045 - 0.045 - 0.035 - 0.03 - 140 | 0 - | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | 4 | \neg | 1000 | A 800 | Δ Δ | | | | | | | | | | | | | 0.07 - 0.065 - 0.06 - 0.065 - 0.05 - 0.05 - 0.05 - 0.045 - 0.04 - 0.035 - 0.04 - 1.00 | 0 - 0 - 0 - | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | 4 | \neg | 1023 | 1001 | 23.5
A | | | | | | | | | | | | | 0.07 - 0.065 - 0.06 - 0.055 - 0.055 - 0.045 - 0.045 - 0.035 - 0.04 - 1.003 - 1.004 - 1 | 0 - 0 - 0 - | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | 4 | \neg | 1029 | 100, | 939 | | | | | | | | | | | | | 0.07 - 0.065 - 0.06 - 0.065 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.04 - 0.035 - 0.03 - 144 - 124 - 104 -
104 - 10 | | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | 4 | \neg | 1000 | A 1800 | 310 | | | | | | | | | | | | | 0.07 - 0.065 - 0.06 - 0.065 - 0.05 - 0.05 - 0.05 - 0.045 - 0.04 - 0.035 - 0.04 - 1.00 | | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | 4 | \neg | 1029 | A 1800 | A | | | | | | | | | | | | | 0.07 - 0.065 - 0.06 - 0.065 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.04 - 0.035 - 0.03 - 144 - 124 - 100 - 86 - 66 - 44 - 26 | | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | 4 | \neg | 1029 | 1800 | △ | | | | | | | | | | | | | 0.07 - 0.065 - 0.06 - 0.065 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.04 - 0.035 - 0.03 - 144 - 124 - 100 - 86 - 66 - 44 - 26 | | st.dev. (I
R(calc.)
st.dev.(E
R(D7504 | n)
07504
4:21) | Δ | 0.00
0.00
0.00
0.00 | 03132
0877
02295
0643 | ∆ soov | \neg | 1029 | A 1900 | ∆ | | | | | | | | | | | | mixed-Xylenes: iis21C13 page 35 of 39 # Determination of sum of C9 and heavier aromatics on sample #21182; results in %M/M | lab 52 | method
D7504 | value 0.0835 | mark | z(targ)
0.22 | remar | KS | | | | | | | | | |--|--|--|----------|------------------------|-------|---------|--------------|-----|-------|------|-------|------|-------|---| | 52
150 | D1304 | 0.0835 | | 0.22 | | | | | | | | | | | | 171 | D7504 | 0.0869 | | 0.57 | | | | | | | | | | | | 315 | D7504 | 0.091 | | 1.00 | | | | | | | | | | | | 317 | D7504 | 0.0759 | | -0.58 | | | | | | | | | | | | 323
396 | D6563 | 0.08 | | -0.15
 | | | | | | | | | | | | 445 | D6563 | 0.08 | | -0.15 | | | | | | | | | | | | 446 | | | | | | | | | | | | | | | | 551 | | | | | | | | | | | | | | | | 555 | | | | | | | | | | | | | | | | 558
734 | D7504 | 0.08559 | | 0.44 | | | | | | | | | | | | 823 | D7504 | 0.0793 | | -0.23 | | | | | | | | | | | | 862 | D7504 | 0.0796 | | -0.19 | | | | | | | | | | | | 913 | D7504 | 0.025675 | DG(0.05) | -5.87 | | | | | | | | | | | | 1011
1040 | D7504 |
0.017 | DG(0.05) | -6.78 | | | | | | | | | | | | 1040 | D6563 | 0.017 | DG(0.03) | -0.76
-0.15 | | | | | | | | | | | | 1081 | D6563 | 0.0705728 | | -1.14 | | | | | | | | | | | | 1250 | | | | | | | | | | | | | | | | 1320 | D7504 | 0.09 | | 0.90 | | | | | | | | | | | | 1434
1530 | D7504 | 0.08449
0.0545 | | 0.32
-2.84 | | | | | | | | | | | | 1812 | D7304 | 0.10679 | | 2.67 | | | | | | | | | | | | 6201 | D7504 | 0.136 | G(0.01) | 5.74 | | | | | | | | | | | | 6262 | D7504 | 0.0720 | | -0.99 | | | | | | | | | | | | 6412 | D5917 | 0.08698 | | 0.58 | | | | | | | | | | | | 7009 | D2306 | 0.079 | | -0.26 | | | | | | | | | | | | | normality
n | not OK
18 | outliers | 3 | | | | | | | | | | | | | | | outliers
mean (n) | 0.08145 | | | | | | | | | | | | | | | outliers
mean (n)
st.dev. (n) | 0.08145
0.0105 | | | | | | | | | | | | | | | outliers
mean (n)
st.dev. (n)
R(calc.) | 0.08145
0.0105
0.02946 | | | | | | | | | | | | | | | outliers
mean (n)
st.dev. (n)
R(calc.)
st.dev.(Horwitz)
R(Horwitz) | 0.08145
0.0105
0.02946 | | | 4 com | ponents | | | | | | | | | | Compa | outliers
mean (n)
st.dev. (n)
R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are | 0.08145
0.0105
0.02946
0.009504
0.02661 | | | 4 com | oonents | | | | | | | | | | Compa | outliers
mean (n)
st.dev. (n)
R(calc.)
st.dev.(Horwitz)
R(Horwitz) | 0.08145
0.0105
0.02946
0.009504 | | | 4 com | oonents | | | | | | | | | | Comp a | outliers
mean (n)
st.dev. (n)
R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are | 0.08145
0.0105
0.02946
0.009504
0.02661 | | | 4 com | oonents | | | | | | | | | | | outliers
mean
(n)
st.dev. (n)
R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are | 0.08145
0.0105
0.02946
0.009504
0.02661 | | | 4 com | oonents | | | | | | | | × | | 0.16 — | outliers
mean (n)
st.dev. (n)
R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are | 0.08145
0.0105
0.02946
0.009504
0.02661 | | | 4 com | ponents | | | | | | | | x | | 0.16 T | outliers
mean (n)
st.dev. (n)
R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are | 0.08145
0.0105
0.02946
0.009504
0.02661 | | | 4 com | oonents | | | | | | | Δ | × | | 0.16 T
0.14 -
0.12 - | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) R(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | Δ Δ | Δ Δ | 4 com | oonents | <u> </u> | Δ | Δ | Δ | Δ | Δ | Δ | х | | 0.16 T
0.14 -
0.12 -
0.1 - | outliers
mean (n)
st.dev. (n)
R(calc.)
st.dev.(Horwitz)
R(Horwitz)
are | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | Δ Δ | Δ Δ- | 4 com | oonents | <u> </u> | Δ | Δ | Δ | Δ | Δ | Δ | x | | 0.16 T
0.14 -
0.12 -
0.1
0.08 | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) R(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | Δ Δ | Δ Δ | 4 com | ponents | <u> </u> | Δ | Δ | Δ | Δ | Δ | Δ | x | | 0.16 T
0.14 -
0.12 -
0.1
0.08 | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) R(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | Δ Δ | Δ | 4 com | ponents | A | Δ | Δ | Δ | Δ | Δ | Δ | x | | 0.16 T
0.14 -
0.12 -
0.1 -
0.08 -
0.06 -
0.04 -
0.02 x | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | Δ Δ | δ δ | Δ | Δ | 4 8 | | | | | | | | | 0.16 T
0.14 -
0.12 -
0.1 -
0.08 -
0.06 -
0.04 -
0.02 - x | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | 7009 | 982
445 | 4 com | oonents | 1434 | 734 | Δ [ξ] | 6412 | QS(2) | 3.05 | 21.81 | x | | 0.16 T
0.14 -
0.12 -
0.1 -
0.08 -
0.06 -
0.04 -
0.02 x | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | | Ф 448 | Δ | Δ | 4591 | | | | | | | | | 0.16 | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | | 9 82 A A 445 | Δ | Δ | 14.54 | | | | | | | | | 0.16 | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | | 4445 | Δ | Δ | 4891 | | | | | | | | | 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 x 0 0.02 45 40 35 0 | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | | 446 862 | Δ | Δ | 1834 | | | | | | | | | 0.16 | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | | 4 4 445 | Δ | Δ | 143H | | | | | | | | | 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 x 0 0.02 45 40 35 0 | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | | 445 | Δ | Δ | 4874 | | | | | | | | | 0.16 | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | | 982 | Δ | Δ | 14.34 | | | | | | | | | 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 x 0 35 - 30 - 25 - 20 - | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | | 446 | Δ | Δ | 1871 | | | | | | | | | 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0.05 0.04 0.02 0.05 0.0 | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | | 962 A 445 | Δ | Δ | 1431 | | | | | | | | | 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 x 0 35 - 30 - 25 - 20 - | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | | 446 | Δ | Δ | 4554
1524 | | | | | | | | | 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0.05 0.04 0.02 0.05 0.0 | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | | Ф 448 | Δ | Δ | 4834 | | | | | | | | | 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 x 0 35 0.06 0.04 0.02 x 0 0.05 0.04 0.05 0.0 | outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) are R(D7504:21) | 0.08145
0.0105
0.02946
0.009504
0.02661
0.04604 | | Δ Δ 4925
445 | Δ | Δ | 1434 | | | | | | | | page 36 of 39 mixed-Xylenes: iis21C13 # Determination of Non-aromatics on sample #21182; results in %M/M | lab | method | value | mark | z(targ) | rem | arks | | | | | | | | | | | |--------------|-------------------------|---------------------|--------|----------------|-------|----------|-------|------|------|----|-----|------|-----|------|-----|------| | 52 | D7504 | 0.0571 | IIIaik | 0.91 | renn | En in | | | | | | | | | | | | 150 | | | | | | | | | | | | | | | | | | 171 | D7504 | 0.0586 | | 1.07 | | | | | | | | | | | | | | 315 | D7504 | 0.050 | | 0.14 | | | | | | | | | | | | | | 317
323 | D7504
D6563 | 0.0379
0.04 | | -1.17
-0.95 | | | | | | | | | | | | | | 396 | D7504 | 0.04 | | 0.32 | | | | | | | | | | | | | | 445 | D2360 | 0.067 | | 1.98 | | | | | | | | | | | | | | 446 | | | | | | | | | | | | | | | | | | 551 | | | | | | | | | | | | | | | | | |
555
550 | | | | | | | | | | | | | | | | | | 558
734 | D7504 | 0.0630 | | 1.55 | | | | | | | | | | | | | | 823 | D7504 | 0.0472 | | -0.16 | | | | | | | | | | | | | | 862 | D7504 | 0.0309 | | -1.93 | | | | | | | | | | | | | | 913 | D7504 | 0.047575 | | -0.12 | | | | | | | | | | | | | | 1011
1040 | D5917
D7504 | 0.0328
0.075 | | -1.73
2.85 | | | | | | | | | | | | | | 1040 | D6563 | 0.075 | | 1.22 | | | | | | | | | | | | | | 1081 | D6563 | 0.042973 | | -0.62 | | | | | | | | | | | | | | 1250 | | | | | | | | | | | | | | | | | | 1320 | D7504 | 0.02 | | -3.12 | | | | | | | | | | | | | | 1434 | D7504 | 0.05549 | | 0.73 | | | | | | | | | | | | | | 1530
1812 | D7504 | 0.0441
0.03459 | | -0.50
-1.53 | | | | | | | | | | | | | | 6201 | D7504 | 0.03439 | | -0.40 | | | | | | | | | | | | | | 6262 | D7504 | 0.0649 | | 1.76 | | | | | | | | | | | | | | 6412 | D5917 | 0.05471 | С | 0.65 | first | reported | 0.013 | 323 | | | | | | | | | | 7009 | D2306 | 0.040 | | -0.95 | | | | | | | | | | | | | | | normality
n | OK
23 | | | | | | | | | | | | | | | | | outliers | 0 | | | | | | | | | | | | | | | | | mean (n) | 0.04872 | | | | | | | | | | | | | | | | | st.dev. (n)
R(calc.) | 0.013167
0.03687 | | | | | | | | | | | | | | | | | st.dev.(Horwitz) | 0.03007 | | | | | | | | | | | | | | | | | R(Horwitz) | 0.02580 | | | 9 со | mponen | ts | | | | | | | | | | | Comp | | 0.00507 | | | | | | | | | | | | | | | | | R(D7504:21) | 0.00567 | | | | | | | | | | | | | | | | 0.09 T | | | | | | | | | | | | | | | | | | 0.08 | | | | | | | | | | | | | | | | | | 0.07 | | | | | | | | | | | | | | | Δ | Δ | | 0.06 + | | | | | | | | Δ | Δ | Δ | Δ | Δ | Δ | Δ | | | | 0.05 | | | | Δ Δ | Δ | | Δ | | | | | | | | | | | 0.04 - | | <u> </u> | Δ Δ | Δ - | | | | | | | | | | | | | | 0.03 | | | | | | | | | | | | | | | | | | 0.02 - 🛆 | | | | | | | | | | | | | | | | | | 0.01 | | | | | | | | | | | | | | | | | | 1320 | 1011 | 323 | 1081 | 1530 | 823 | 315 | 396 | 6412 | 1434 | 25 | 171 | 1041 | 734 | 6262 | 445 | 1040 | | 35 т | Kernel De | nsity | | | | | | | | | | | | | | | 30 - | / | | · | | | | | | | | | | | | | | | | /_ | _ \ | | | | | | | | | | | | | | | | 25 - | | | | | | | | | | | | | | | | | | | / | \ | | | | | | | | | | | | | | | | 20 - | / | \ | | | | | | | | | | | | | | | | 15 - | | \\ | | | | | | | | | | | | | | | | | | // | | | | | | | | | | | | | | | | 10 - | / | // | | | | | | | | | | | | | | | | | / | // | | | | | | | | | | | | | | | | 5 - | // | // | 0 + | 0.02 0.04 | 0.06 0.0 | 8 0.1 | | | | | | | | | | | | | | mixed-Xylenes: iis21C13 page 37 of 39 ### **APPENDIX 2** ### Number of participants per country - 2 labs in BELGIUM - 3 labs in BRAZIL - 1 lab in CANADA - 1 lab in CHINA, People's Republic - 4 labs in GERMANY - 1 lab in INDIA - 1 lab in IRAN, Islamic Republic of - 1 lab in ISRAEL - 1 lab in ITALY - 1 lab in KAZAKHSTAN - 1 lab in KOREA, Republic of - 4 labs in NETHERLANDS - 1 lab in PAKISTAN - 2 labs in PORTUGAL - 1 lab in SLOVAKIA - 2 labs in UNITED KINGDOM - 2 labs in UNITED STATES OF AMERICA page 38 of 39 mixed-Xylenes: iis21C13 #### **APPENDIX 3** #### **Abbreviations** C = final test result after checking of first reported suspect test result D(0.01) = outlier in Dixon's outlier test D(0.05) = straggler in Dixon's outlier test D(0.01) = outlier in Grubbs' outlier test D(0.05) = straggler in Grubbs' outlier test D(0.05) = outlier in Double Grubbs' outlier test D(0.05) = straggler in Double Grubbs' outlier test R(0.01) = outlier in Rosner's outlier test R(0.05) = straggler in Rosner's outlier test E = calculation difference between reported test result and result calculated by iis W = test result withdrawn on request of participant ex = test result excluded from statistical evaluation n.a. = not applicable n.e. = not evaluated n.d. = not detected fr. = first reported f+? = possibly a false positive test result? f-? = possibly a false negative test result? SDS = Safety Data Sheet #### Literature - iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018 - 2 ISO5725:86 - 3 ISO5725 parts 1-6:94 - 4 ISO13528:05 - 5 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993) - 6 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975) - 7 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988) - 8 J.N. Miller, Analyst, <u>118</u>, 455, (1993) - 9 Analytical Methods Committee, Technical Brief, No 4, January 2001 - 10 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364, (2002) - 11 W. Horwitz and R. Albert, J. AOAC Int, 79.3, 589-621, (1996) - Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, 25(2), 165-172, (1983) mixed-Xylenes: iis21C13 page 39 of 39